These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28406302)

  • 21. Local orbitals by minimizing powers of the orbital variance.
    Jansík B; Høst S; Kristensen K; Jørgensen P
    J Chem Phys; 2011 May; 134(19):194104. PubMed ID: 21599041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orthogonal natural atomic orbitals form an appropriate one-electron basis for expanding CASSCF wave functions into localized bonding schemes and their weights.
    Bachler V
    J Comput Chem; 2007 Sep; 28(12):2013-9. PubMed ID: 17407092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?
    Sylvetsky N; Peterson KA; Karton A; Martin JM
    J Chem Phys; 2016 Jun; 144(21):214101. PubMed ID: 27276939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Localized Intrinsic Valence Virtual Orbitals as a Tool for the Automatic Classification of Core Excited States.
    Derricotte WD; Evangelista FA
    J Chem Theory Comput; 2017 Dec; 13(12):5984-5999. PubMed ID: 29125754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions of Li, Ca, and Al with aromatic carbon materials: an ab initio study.
    Zhao YL; Lin CS; Zhang RQ; Wang RS
    J Chem Phys; 2005 May; 122(19):194322. PubMed ID: 16161588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local Hartree-Fock orbitals using a three-level optimization strategy for the energy.
    Høyvik IM; Jansik B; Kristensen K; Jørgensen P
    J Comput Chem; 2013 Jun; 34(15):1311-20. PubMed ID: 23456899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relativistic state-specific multireference perturbation theory incorporating improved virtual orbitals: Application to the ground state single-bond dissociation.
    Ghosh A; Chaudhuri RK; Chattopadhyay S; Mahapatra US
    J Comput Chem; 2015 Oct; 36(26):1954-72. PubMed ID: 26272333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of bonding patterns in the valence isoelectronic series O(3), S(3), SO(2), and OS(2) in terms of oriented quasi-atomic molecular orbitals.
    Glezakou VA; Elbert ST; Xantheas SS; Ruedenberg K
    J Phys Chem A; 2010 Aug; 114(33):8923-31. PubMed ID: 20666489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relativistic correlating basis sets for the sixth-period d-block atoms from Lu to Hg.
    Osanai Y; Noro T; Miyoshi E; Sekiya M; Koga T
    J Chem Phys; 2004 Apr; 120(14):6408-13. PubMed ID: 15267529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Orbital overlap and chemical bonding.
    Krapp A; Bickelhaupt FM; Frenking G
    Chemistry; 2006 Dec; 12(36):9196-216. PubMed ID: 17024702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.
    Sayfutyarova ER; Sun Q; Chan GK; Knizia G
    J Chem Theory Comput; 2017 Sep; 13(9):4063-4078. PubMed ID: 28731706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of the adsorption behavior of elements 112 and 114 on inert surfaces from ab initio Dirac-Coulomb atomic calculations.
    Pershina V; Borschevsky A; Eliav E; Kaldor U
    J Chem Phys; 2008 Jan; 128(2):024707. PubMed ID: 18205466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization and Generation of Local Occupied and Virtual Hartree-Fock Orbitals.
    Høyvik IM; Jørgensen P
    Chem Rev; 2016 Mar; 116(5):3306-27. PubMed ID: 26855066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bond order and valence indices: a personal account.
    Mayer I
    J Comput Chem; 2007 Jan; 28(1):204-21. PubMed ID: 17066501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.
    Ji WX; Xu W; Schwarz WH; Wang SG
    J Comput Chem; 2015 Mar; 36(7):449-58. PubMed ID: 25565146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systematically convergent correlation consistent basis sets for molecular core-valence correlation effects: the third-row atoms gallium through krypton.
    Deyonker NJ; Peterson KA; Wilson AK
    J Phys Chem A; 2007 Nov; 111(44):11383-93. PubMed ID: 17918918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic structure interpolation via atomic orbitals.
    Chen M; Guo GC; He L
    J Phys Condens Matter; 2011 Aug; 23(32):325501. PubMed ID: 21795782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variationally optimized basis orbitals for biological molecules.
    Ozaki T; Kino H
    J Chem Phys; 2004 Dec; 121(22):10879-88. PubMed ID: 15634039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Near Equivalence of Intrinsic Atomic Orbitals and Quasiatomic Orbitals.
    Janowski T
    J Chem Theory Comput; 2014 Aug; 10(8):3085-91. PubMed ID: 26588279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Comprehensive Analysis in Terms of Molecule-Intrinsic, Quasi-Atomic Orbitals. III. The Covalent Bonding Structure of Urea.
    West AC; Schmidt MW; Gordon MS; Ruedenberg K
    J Phys Chem A; 2015 Oct; 119(41):10368-75. PubMed ID: 26371867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.