BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28406399)

  • 1. Automated deep-phenotyping of the vertebrate brain.
    Allalou A; Wu Y; Ghannad-Rezaie M; Eimon PM; Yanik MF
    Elife; 2017 Apr; 6():. PubMed ID: 28406399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. fezf2 expression delineates cells with proliferative potential and expressing markers of neural stem cells in the adult zebrafish brain.
    Berberoglu MA; Dong Z; Mueller T; Guo S
    Gene Expr Patterns; 2009 Sep; 9(6):411-22. PubMed ID: 19524703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphometric analysis and neuroanatomical mapping of the zebrafish brain.
    Gupta T; Marquart GD; Horstick EJ; Tabor KM; Pajevic S; Burgess HA
    Methods; 2018 Nov; 150():49-62. PubMed ID: 29936090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-wide cellular resolution imaging of Cre transgenic zebrafish lines for functional circuit-mapping.
    Tabor KM; Marquart GD; Hurt C; Smith TS; Geoca AK; Bhandiwad AA; Subedi A; Sinclair JL; Rose HM; Polys NF; Burgess HA
    Elife; 2019 Feb; 8():. PubMed ID: 30735129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of id genes and their potential regulator znf238 in zebrafish adult neural progenitor cells and neurons suggests distinct functions in adult neurogenesis.
    Diotel N; Beil T; Strähle U; Rastegar S
    Gene Expr Patterns; 2015; 19(1-2):1-13. PubMed ID: 26107416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The helix-loop-helix protein id1 controls stem cell proliferation during regenerative neurogenesis in the adult zebrafish telencephalon.
    Rodriguez Viales R; Diotel N; Ferg M; Armant O; Eich J; Alunni A; März M; Bally-Cuif L; Rastegar S; Strähle U
    Stem Cells; 2015 Mar; 33(3):892-903. PubMed ID: 25376791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish.
    Feierstein CE; Portugues R; Orger MB
    Neuroscience; 2015 Jun; 296():26-38. PubMed ID: 25433239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and patterning of the forebrain and olfactory system by zinc-finger genes Fezf1 and Fezf2.
    Shimizu T; Hibi M
    Dev Growth Differ; 2009 Apr; 51(3):221-31. PubMed ID: 19222525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-brain activity mapping onto a zebrafish brain atlas.
    Randlett O; Wee CL; Naumann EA; Nnaemeka O; Schoppik D; Fitzgerald JE; Portugues R; Lacoste AM; Riegler C; Engert F; Schier AF
    Nat Methods; 2015 Nov; 12(11):1039-46. PubMed ID: 26778924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZFIQ: a software package for zebrafish biology.
    Liu T; Nie J; Li G; Guo L; Wong ST
    Bioinformatics; 2008 Feb; 24(3):438-9. PubMed ID: 18089619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time in vivo monitoring of circadian E-box enhancer activity: a robust and sensitive zebrafish reporter line for developmental, chemical and neural biology of the circadian clock.
    Weger M; Weger BD; Diotel N; Rastegar S; Hirota T; Kay SA; Strähle U; Dickmeis T
    Dev Biol; 2013 Aug; 380(2):259-73. PubMed ID: 23665472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Neural Connectivity Analysis in Zebrafish With Restricted Anterograde Transneuronal Viral Labeling and Quantitative Brain Mapping.
    Ma M; Kler S; Pan YA
    Front Neural Circuits; 2019; 13():85. PubMed ID: 32038180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How neuronal migration contributes to the morphogenesis of the CNS: insights from the zebrafish.
    Mione M; Baldessari D; Deflorian G; Nappo G; Santoriello C
    Dev Neurosci; 2008; 30(1-3):65-81. PubMed ID: 18075256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput hyperdimensional vertebrate phenotyping.
    Pardo-Martin C; Allalou A; Medina J; Eimon PM; Wählby C; Fatih Yanik M
    Nat Commun; 2013; 4():1467. PubMed ID: 23403568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain.
    Shimizu T; Nakazawa M; Kani S; Bae YK; Shimizu T; Kageyama R; Hibi M
    Development; 2010 Jun; 137(11):1875-85. PubMed ID: 20431123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-Organism Cellular Pathology: A Systems Approach to Phenomics.
    Cheng KC; Katz SR; Lin AY; Xin X; Ding Y
    Adv Genet; 2016; 95():89-115. PubMed ID: 27503355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secondary neurogenesis and telencephalic organization in zebrafish and mice: a brief review.
    Wullimann MF
    Integr Zool; 2009 Mar; 4(1):123-133. PubMed ID: 21392282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurodevelopment. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain.
    Barbosa JS; Sanchez-Gonzalez R; Di Giaimo R; Baumgart EV; Theis FJ; Götz M; Ninkovic J
    Science; 2015 May; 348(6236):789-93. PubMed ID: 25977550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular phenotype atlas of the zebrafish retina.
    Marc RE; Cameron D
    J Neurocytol; 2001 Jul; 30(7):593-654. PubMed ID: 12118163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes.
    Stewart AM; Grieco F; Tegelenbosch RA; Kyzar EJ; Nguyen M; Kaluyeva A; Song C; Noldus LP; Kalueff AV
    J Neurosci Methods; 2015 Nov; 255():66-74. PubMed ID: 26238728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.