These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 2840663)

  • 1. Site-directed mutagenesis of human beta-adrenergic receptors: substitution of aspartic acid-130 by asparagine produces a receptor with high-affinity agonist binding that is uncoupled from adenylate cyclase.
    Fraser CM; Chung FZ; Wang CD; Venter JC
    Proc Natl Acad Sci U S A; 1988 Aug; 85(15):5478-82. PubMed ID: 2840663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis and continuous expression of human beta-adrenergic receptors. Identification of a conserved aspartate residue involved in agonist binding and receptor activation.
    Chung FZ; Wang CD; Potter PC; Venter JC; Fraser CM
    J Biol Chem; 1988 Mar; 263(9):4052-5. PubMed ID: 2831218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in the properties of beta-adrenergic receptors of myocardial membranes in aging: impairments in agonist-receptor interactions and guanine nucleotide regulation accompany diminished catecholamine-responsiveness of adenylate cyclase.
    Narayanan N; Derby JA
    Mech Ageing Dev; 1982 Jun; 19(2):127-39. PubMed ID: 6287123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutagenesis of alpha 2A-adrenergic receptors: identification of amino acids involved in ligand binding and receptor activation by agonists.
    Wang CD; Buck MA; Fraser CM
    Mol Pharmacol; 1991 Aug; 40(2):168-79. PubMed ID: 1678850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis of the human beta3-adrenoceptor--transmembrane residues involved in ligand binding and signal transduction.
    Gros J; Manning BS; Pietri-Rouxel F; Guillaume JL; Drumare MF; Strosberg AD
    Eur J Biochem; 1998 Feb; 251(3):590-6. PubMed ID: 9490030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of cholera toxin on guanine nucleotide regulation of beta-adrenergic agonist high affinity binding and adenylate cyclase activation in frog erythrocyte membranes.
    Stadel JM; Lefkowitz RJ
    J Cyclic Nucleotide Res; 1981; 7(6):363-74. PubMed ID: 6125532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and analysis of agonist-induced formation of the complex of the stimulatory guanine nucleotide-binding protein with adenylate cyclase in intact wild-type and beta 2-adrenoceptor-expressing NG108-15 cells.
    Kim GD; Carr IC; Milligan G
    Biochem J; 1995 May; 308 ( Pt 1)(Pt 1):275-81. PubMed ID: 7538756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agonist regulation of adenylate cyclase activity in neuroblastoma x glioma hybrid NG108-15 cells transfected to co-express adenylate cyclase type II and the beta 2-adrenoceptor. Evidence that adenylate cyclase is the limiting component for receptor-mediated stimulation of adenylate cyclase activity.
    MacEwan DJ; Kim GD; Milligan G
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):1033-9. PubMed ID: 8836153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mammalian beta 2-adrenergic receptor: reconstitution of functional interactions between pure receptor and pure stimulatory nucleotide binding protein of the adenylate cyclase system.
    Cerione RA; Codina J; Benovic JL; Lefkowitz RJ; Birnbaumer L; Caron MG
    Biochemistry; 1984 Sep; 23(20):4519-25. PubMed ID: 6149763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single amino acid substitution in the beta-adrenergic receptor promotes partial agonist activity from antagonists.
    Strader CD; Candelore MR; Hill WS; Dixon RA; Sigal IS
    J Biol Chem; 1989 Oct; 264(28):16470-7. PubMed ID: 2570781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor.
    Green SA; Cole G; Jacinto M; Innis M; Liggett SB
    J Biol Chem; 1993 Nov; 268(31):23116-21. PubMed ID: 7901205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of fluoride on adenylate cyclase activity and guanine nucleotide regulation of agonist high-affinity receptor binding.
    Stadel JM; Crooke ST
    Biochem J; 1988 Aug; 254(1):15-20. PubMed ID: 2845943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation of Asn293 to Asp in transmembrane helix VI abolishes agonist-induced but not constitutive activity of the beta(2)-adrenergic receptor.
    Hannawacker A; Krasel C; Lohse MJ
    Mol Pharmacol; 2002 Dec; 62(6):1431-7. PubMed ID: 12435811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function.
    Strader CD; Sigal IS; Candelore MR; Rands E; Hill WS; Dixon RA
    J Biol Chem; 1988 Jul; 263(21):10267-71. PubMed ID: 2899076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations that uncouple the beta-adrenergic receptor from Gs and increase agonist affinity.
    Strader CD; Dixon RA; Cheung AH; Candelore MR; Blake AD; Sigal IS
    J Biol Chem; 1987 Dec; 262(34):16439-43. PubMed ID: 2890637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocampal and cerebellar beta-adrenergic receptors and adenylate cyclase are differentially altered by chronic ethanol ingestion.
    Valverius P; Hoffman PL; Tabakoff B
    J Neurochem; 1989 Feb; 52(2):492-7. PubMed ID: 2536073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mutation of the beta 2-adrenergic receptor impairs agonist activation of adenylyl cyclase without affecting high affinity agonist binding. Distinct molecular determinants of the receptor are involved in physical coupling to and functional activation of Gs.
    Hausdorff WP; Hnatowich M; O'Dowd BF; Caron MG; Lefkowitz RJ
    J Biol Chem; 1990 Jan; 265(3):1388-93. PubMed ID: 2153131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of residues required for ligand binding to the beta-adrenergic receptor.
    Strader CD; Sigal IS; Register RB; Candelore MR; Rands E; Dixon RA
    Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4384-8. PubMed ID: 2885836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of malnutrition on rat myocardial beta-adrenergic and muscarinic receptors.
    Ransnäs L; Drott C; Lundholm K; Hjalmarson A; Jacobsson B
    Circ Res; 1989 May; 64(5):949-56. PubMed ID: 2539924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of beta-adrenergic receptors. Identification of conserved cysteine residues that independently affect ligand binding and receptor activation.
    Fraser CM
    J Biol Chem; 1989 Jun; 264(16):9266-70. PubMed ID: 2542304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.