These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 28406641)
21. Physisorption of DNA molecules on chemically modified single-walled carbon nanotubes with and without sonication. Umemura K; Ishibashi Y; Oura S Eur Biophys J; 2016 Sep; 45(6):483-9. PubMed ID: 26846296 [TBL] [Abstract][Full Text] [Related]
22. A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine in aqueous solutions. Zhao C; Qu K; Song Y; Xu C; Ren J; Qu X Chemistry; 2010 Jul; 16(27):8147-54. PubMed ID: 20512822 [TBL] [Abstract][Full Text] [Related]
23. Probing the Salt Concentration Dependent Nucelobase Distribution in a Single-Stranded DNA-Single-Walled Carbon Nanotube Hybrid with Molecular Dynamics. Ghosh S; Patel N; Chakrabarti R J Phys Chem B; 2016 Jan; 120(3):455-66. PubMed ID: 26716359 [TBL] [Abstract][Full Text] [Related]
24. Synthesis of nucleobase-functionalized carbon nanotubes and their hybridization with single-stranded DNA. Hwu JR; Kapoor M; Li RY; Lin YC; Horng JC; Tsay SC Chem Asian J; 2014 Dec; 9(12):3408-12. PubMed ID: 25294777 [TBL] [Abstract][Full Text] [Related]
25. Control of Integrin Affinity by Confining RGD Peptides on Fluorescent Carbon Nanotubes. Polo E; Nitka TT; Neubert E; Erpenbeck L; Vuković L; Kruss S ACS Appl Mater Interfaces; 2018 May; 10(21):17693-17703. PubMed ID: 29708725 [TBL] [Abstract][Full Text] [Related]
26. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes. Dong L Nanotechnology; 2009 Nov; 20(46):465602. PubMed ID: 19843998 [TBL] [Abstract][Full Text] [Related]
27. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Johnson RR; Johnson AT; Klein ML Nano Lett; 2008 Jan; 8(1):69-75. PubMed ID: 18069867 [TBL] [Abstract][Full Text] [Related]
28. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Zheng M; Jagota A; Strano MS; Santos AP; Barone P; Chou SG; Diner BA; Dresselhaus MS; McLean RS; Onoa GB; Samsonidze GG; Semke ED; Usrey M; Walls DJ Science; 2003 Nov; 302(5650):1545-8. PubMed ID: 14645843 [TBL] [Abstract][Full Text] [Related]
29. Fundamental properties of oligo double-stranded DNA/single-walled carbon nanotube nanobiohybrids. Yamamoto Y; Fujigaya T; Niidome Y; Nakashima N Nanoscale; 2010 Sep; 2(9):1767-72. PubMed ID: 20820708 [TBL] [Abstract][Full Text] [Related]
30. Preparation and separation of DNA-wrapped carbon nanotubes. Ao G; Zheng M Curr Protoc Chem Biol; 2015 Mar; 7(1):43-51. PubMed ID: 25727062 [TBL] [Abstract][Full Text] [Related]
31. Electrically moving single-stranded DNA into and out of double-walled carbon nanotubes. Li Y; Chen S; Kaneko T; Hatakeyama R Chem Commun (Camb); 2011 Feb; 47(8):2309-11. PubMed ID: 21152585 [TBL] [Abstract][Full Text] [Related]
32. Temperature induced restoration of fluorescence from oxidised single-walled carbon nanotubes in aqueous sodium dodecylsulfate solution. Nish A; Nicholas RJ Phys Chem Chem Phys; 2006 Aug; 8(30):3547-51. PubMed ID: 16871344 [TBL] [Abstract][Full Text] [Related]
33. DNA origami templated self-assembly of discrete length single wall carbon nanotubes. Zhao Z; Liu Y; Yan H Org Biomol Chem; 2013 Jan; 11(4):596-8. PubMed ID: 23208726 [TBL] [Abstract][Full Text] [Related]
35. Optical characterization of DNA-wrapped single walled carbon nanotubes irradiated with ultraviolet light. Yoon D; Cao C; Choi JB; Kim YJ; Baik S J Nanosci Nanotechnol; 2008 Oct; 8(10):5135-8. PubMed ID: 19198406 [TBL] [Abstract][Full Text] [Related]
36. DNA-Assisted Dispersion of Carbon Nanotubes and Comparison with Other Dispersing Agents. Pramanik D; Maiti PK ACS Appl Mater Interfaces; 2017 Oct; 9(40):35287-35296. PubMed ID: 28905626 [TBL] [Abstract][Full Text] [Related]
37. Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. Gigliotti B; Sakizzie B; Bethune DS; Shelby RM; Cha JN Nano Lett; 2006 Feb; 6(2):159-64. PubMed ID: 16464027 [TBL] [Abstract][Full Text] [Related]
38. Studying Different Binding and Intracellular Delivery Efficiency of ssDNA Single-Walled Carbon Nanotubes and Their Effects on LC3-Related Autophagy in Renal Mesangial Cells via miRNA-382. Wang G; Zhao T; Wang L; Hu B; Darabi A; Lin J; Xing MM; Qiu X ACS Appl Mater Interfaces; 2015 Nov; 7(46):25733-40. PubMed ID: 26327220 [TBL] [Abstract][Full Text] [Related]
39. Single-stranded DNA functionalized single-walled carbon nanotubes for microbiosensors via layer-by-layer electrostatic self-assembly. Kang Z; Yan X; Zhang Y; Pan J; Shi J; Zhang X; Liu Y; Choi JH; Porterfield DM ACS Appl Mater Interfaces; 2014 Mar; 6(6):3784-9. PubMed ID: 24606733 [TBL] [Abstract][Full Text] [Related]
40. Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube. Roxbury D; Jagota A; Mittal J J Am Chem Soc; 2011 Aug; 133(34):13545-50. PubMed ID: 21797248 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]