These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 28406641)

  • 41. DNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles.
    Pearce TR; Kokkoli E
    Soft Matter; 2015 Jan; 11(1):109-17. PubMed ID: 25370121
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaction of single-stranded DNA with curved carbon nanotube is much stronger than with flat graphite.
    Iliafar S; Mittal J; Vezenov D; Jagota A
    J Am Chem Soc; 2014 Sep; 136(37):12947-57. PubMed ID: 25162693
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes.
    Ghosh S; Bachilo SM; Simonette RA; Beckingham KM; Weisman RB
    Science; 2010 Dec; 330(6011):1656-9. PubMed ID: 21109631
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Raman and fluorescence spectroscopic studies of a DNA-dispersed double-walled carbon nanotube solution.
    Kim JH; Kataoka M; Shimamoto D; Muramatsu H; Jung YC; Hayashi T; Kim YA; Endo M; Park JS; Saito R; Terrones M; Dresselhaus MS
    ACS Nano; 2010 Feb; 4(2):1060-6. PubMed ID: 20112962
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing.
    Satishkumar BC; Brown LO; Gao Y; Wang CC; Wang HL; Doorn SK
    Nat Nanotechnol; 2007 Sep; 2(9):560-4. PubMed ID: 18654368
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene.
    Cheng CL; Zhao GJ
    Nanoscale; 2012 Apr; 4(7):2301-5. PubMed ID: 22392473
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetics of Single-Wall Carbon Nanotube Coating Displacement by Single-Stranded DNA Depends on Nanotube Structure.
    Lei K; Bachilo SM; Weisman RB
    ACS Nano; 2023 Sep; 17(17):17568-17575. PubMed ID: 37646489
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Length- and defect-dependent fluorescence efficiencies of individual single-walled carbon nanotubes.
    Cherukuri TK; Tsyboulski DA; Weisman RB
    ACS Nano; 2012 Jan; 6(1):843-50. PubMed ID: 22128755
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of pH controlled DNA secondary structures in the reversible dispersion/precipitation and separation of metallic and semiconducting single-walled carbon nanotubes.
    Maji B; Samanta SK; Bhattacharya S
    Nanoscale; 2014 Apr; 6(7):3721-30. PubMed ID: 24569668
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Probing the Influence of Amino Acids on Photoluminescence from Carbon Nanotubes Suspended with DNA.
    Kurnosov NV; Leontiev VS; Karachevtsev VA
    J Fluoresc; 2016 Nov; 26(6):1951-1958. PubMed ID: 27484983
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Label-free fluorescent sensor for mercury(II) ion by using carbon nanotubes to reduce background signal.
    Guo LQ; Yin N; Nie DD; Gan JR; Li MJ; Fu FF; Chen GN
    Analyst; 2011 Apr; 136(8):1632-6. PubMed ID: 21336410
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancement of Photoluminescence from Semiconducting Nanotubes in Aqueous Suspensions due to Cysteine and Dithiothreitol Doping: Influence of the Sonication Treatment.
    Kurnosov NV; Leontiev VS; Karachevtsev VA
    Nanoscale Res Lett; 2016 Dec; 11(1):490. PubMed ID: 27822912
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Insertion kinetics of small nucleotides through single walled carbon nanotube.
    Clavier A; Kraszewski S; Ramseyer C; Picaud F
    J Biotechnol; 2013 Mar; 164(1):13-8. PubMed ID: 23262130
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sequence-Dependent Surface Coverage of ssDNA Coatings on Single-Wall Carbon Nanotubes.
    Alizadehmojarad AA; Bachilo SM; Weisman RB
    J Phys Chem A; 2024 Jul; 128(28):5578-5585. PubMed ID: 38981061
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carbon nanotube-DNA hybrid used for activity monitoring and inhibitor screening of nuclease.
    Liu ZD; Hu PP; Zhao HX; Li YF; Huang CZ
    Anal Chim Acta; 2011 Nov; 706(1):171-5. PubMed ID: 21995925
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Systematic Selection of High-Affinity ssDNA Sequences to Carbon Nanotubes.
    Lee D; Lee J; Kim W; Suh Y; Park J; Kim S; Kim Y; Kwon S; Jeong S
    Adv Sci (Weinh); 2024 Aug; 11(32):e2308915. PubMed ID: 38932669
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Understanding the binding mechanism of various chiral SWCNTs and ssDNA: a computational study.
    Neihsial S; Periyasamy G; Samanta PK; Pati SK
    J Phys Chem B; 2012 Dec; 116(51):14754-9. PubMed ID: 23199121
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interaction of single-walled carbon nanotubes with poly(propyl ether imine) dendrimers.
    Jayamurugan G; Vasu KS; Rajesh YB; Kumar S; Vasumathi V; Maiti PK; Sood AK; Jayaraman N
    J Chem Phys; 2011 Mar; 134(10):104507. PubMed ID: 21405175
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection of influenza A virus based on fluorescence resonance energy transfer from quantum dots to carbon nanotubes.
    Tian J; Zhao H; Liu M; Chen Y; Quan X
    Anal Chim Acta; 2012 Apr; 723():83-7. PubMed ID: 22444577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.