BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28406741)

  • 1. Bridging the dynamics and organization of chromatin domains by mathematical modeling.
    Shinkai S; Nozaki T; Maeshima K; Togashi Y
    Nucleus; 2017 Jul; 8(4):353-359. PubMed ID: 28406741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Nucleosome Movement Provides Structural Information of Topological Chromatin Domains in Living Human Cells.
    Shinkai S; Nozaki T; Maeshima K; Togashi Y
    PLoS Comput Biol; 2016 Oct; 12(10):e1005136. PubMed ID: 27764097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of fast and slow chromatin revealed by single-nucleosome dynamics.
    Ashwin SS; Nozaki T; Maeshima K; Sasai M
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19939-19944. PubMed ID: 31527274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells.
    Hihara S; Pack CG; Kaizu K; Tani T; Hanafusa T; Nozaki T; Takemoto S; Yoshimi T; Yokota H; Imamoto N; Sako Y; Kinjo M; Takahashi K; Nagai T; Maeshima K
    Cell Rep; 2012 Dec; 2(6):1645-56. PubMed ID: 23246002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct polymer physics principles govern chromatin dynamics in mouse and Drosophila topological domains.
    Ea V; Sexton T; Gostan T; Herviou L; Baudement MO; Zhang Y; Berlivet S; Le Lay-Taha MN; Cathala G; Lesne A; Victor JM; Fan Y; Cavalli G; Forné T
    BMC Genomics; 2015 Aug; 16(1):607. PubMed ID: 26271925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging.
    Nozaki T; Imai R; Tanbo M; Nagashima R; Tamura S; Tani T; Joti Y; Tomita M; Hibino K; Kanemaki MT; Wendt KS; Okada Y; Nagai T; Maeshima K
    Mol Cell; 2017 Jul; 67(2):282-293.e7. PubMed ID: 28712725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible and dynamic nucleosome fiber in living mammalian cells.
    Nozaki T; Kaizu K; Pack CG; Tamura S; Tani T; Hihara S; Nagai T; Takahashi K; Maeshima K
    Nucleus; 2013; 4(5):349-56. PubMed ID: 23945462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changing chromatin fiber conformation by nucleosome repositioning.
    Müller O; Kepper N; Schöpflin R; Ettig R; Rippe K; Wedemann G
    Biophys J; 2014 Nov; 107(9):2141-50. PubMed ID: 25418099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin behavior in living cells: Lessons from single-nucleosome imaging and tracking.
    Ide S; Tamura S; Maeshima K
    Bioessays; 2022 Jul; 44(7):e2200043. PubMed ID: 35661389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Condensed but liquid-like domain organization of active chromatin regions in living human cells.
    Nozaki T; Shinkai S; Ide S; Higashi K; Tamura S; Shimazoe MA; Nakagawa M; Suzuki Y; Okada Y; Sasai M; Onami S; Kurokawa K; Iida S; Maeshima K
    Sci Adv; 2023 Apr; 9(14):eadf1488. PubMed ID: 37018405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin as dynamic 10-nm fibers.
    Maeshima K; Imai R; Tamura S; Nozaki T
    Chromosoma; 2014 Jun; 123(3):225-37. PubMed ID: 24737122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic chromatin organization without the 30-nm fiber.
    Maeshima K; Ide S; Babokhov M
    Curr Opin Cell Biol; 2019 Jun; 58():95-104. PubMed ID: 30908980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping.
    Risca VI; Denny SK; Straight AF; Greenleaf WJ
    Nature; 2017 Jan; 541(7636):237-241. PubMed ID: 28024297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome organization across scales: mechanistic insights from in vitro reconstitution studies.
    Oberbeckmann E; Oudelaar AM
    Biochem Soc Trans; 2024 Apr; 52(2):793-802. PubMed ID: 38451192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics as a cause for the nanoscale organization of the genome.
    Barth R; Fourel G; Shaban HA
    Nucleus; 2020 Jan; 11(1):83-98. PubMed ID: 32449444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of ATP dependent chromatin remodeling.
    Gangaraju VK; Bartholomew B
    Mutat Res; 2007 May; 618(1-2):3-17. PubMed ID: 17306844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights of nucleosome and the 30-nm chromatin fiber.
    Zhu P; Li G
    Curr Opin Struct Biol; 2016 Feb; 36():106-15. PubMed ID: 26872330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleosome and chromatin fiber dynamics.
    Luger K; Hansen JC
    Curr Opin Struct Biol; 2005 Apr; 15(2):188-96. PubMed ID: 15837178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From nucleosome to chromosome: a dynamic organization of genetic information.
    Fransz P; de Jong H
    Plant J; 2011 Apr; 66(1):4-17. PubMed ID: 21443619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling chromatin structure and dynamics: status and prospects.
    Korolev N; Fan Y; Lyubartsev AP; Nordenskiöld L
    Curr Opin Struct Biol; 2012 Apr; 22(2):151-9. PubMed ID: 22305428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.