These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 28406922)
1. 3D fabrication and characterization of phosphoric acid scaffold with a HA/β-TCP weight ratio of 60:40 for bone tissue engineering applications. Wang Y; Wang K; Li X; Wei Q; Chai W; Wang S; Che Y; Lu T; Zhang B PLoS One; 2017; 12(4):e0174870. PubMed ID: 28406922 [TBL] [Abstract][Full Text] [Related]
2. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776 [TBL] [Abstract][Full Text] [Related]
3. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
4. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds. Bertol LS; Schabbach R; Loureiro Dos Santos LA J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883 [TBL] [Abstract][Full Text] [Related]
5. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Inzana JA; Olvera D; Fuller SM; Kelly JP; Graeve OA; Schwarz EM; Kates SL; Awad HA Biomaterials; 2014 Apr; 35(13):4026-34. PubMed ID: 24529628 [TBL] [Abstract][Full Text] [Related]
6. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Diaz-Gomez L; Elizondo ME; Kontoyiannis PD; Koons GL; Dacunha-Marinho B; Zhang X; Ajayan P; Jansen JA; Melchiorri AJ; Mikos AG Tissue Eng Part C Methods; 2020 Jun; 26(6):292-305. PubMed ID: 32326874 [TBL] [Abstract][Full Text] [Related]
7. Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds. Wei Q; Wang Y; Li X; Yang M; Chai W; Wang K; zhang Y J Mech Behav Biomed Mater; 2016 Apr; 57():190-200. PubMed ID: 26724560 [TBL] [Abstract][Full Text] [Related]
8. Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. Khalyfa A; Vogt S; Weisser J; Grimm G; Rechtenbach A; Meyer W; Schnabelrauch M J Mater Sci Mater Med; 2007 May; 18(5):909-16. PubMed ID: 17216579 [TBL] [Abstract][Full Text] [Related]
9. 3D printed β-tricalcium phosphate versus synthetic bone mineral scaffolds: A comparative in vitro study of biocompatibility. Slavin BV; Mirsky NA; Stauber ZM; Nayak VV; Smay JE; Rivera CF; Mijares DQ; Coelho PG; Cronstein BN; Tovar N; Witek L Biomed Mater Eng; 2024; 35(4):365-375. PubMed ID: 38578877 [TBL] [Abstract][Full Text] [Related]
10. Development of mechanically compliant 3D composite scaffolds for bone tissue engineering applications. Anandan D; Mary Stella S; Arunai Nambiraj N; Vijayalakshmi U; Jaiswal AK J Biomed Mater Res A; 2018 Dec; 106(12):3267-3274. PubMed ID: 30289613 [TBL] [Abstract][Full Text] [Related]
11. Development of a synthetic bone scaffold using porous hydroxyapatite for bone repair. Mustaffa R; Besar I; Andanastuti M Med J Malaysia; 2008 Jul; 63 Suppl A():95-6. PubMed ID: 19025001 [TBL] [Abstract][Full Text] [Related]
12. Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone. Sulaiman SB; Keong TK; Cheng CH; Saim AB; Idrus RB Indian J Med Res; 2013 Jun; 137(6):1093-101. PubMed ID: 23852290 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characterization of toughness-enhanced scaffolds comprising β-TCP/POC using the freeform fabrication system with micro-droplet jetting. Gao L; Li C; Chen F; Liu C Biomed Mater; 2015 Jun; 10(3):035009. PubMed ID: 26107985 [TBL] [Abstract][Full Text] [Related]
14. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404 [TBL] [Abstract][Full Text] [Related]
15. Porous clinoptilolite-nano biphasic calcium phosphate scaffolds loaded with human dental pulp stem cells for load bearing orthopedic applications. Alshemary AZ; Pazarçeviren AE; Keskin D; Tezcaner A; Hussain R; Evis Z Biomed Mater; 2019 Aug; 14(5):055010. PubMed ID: 31362280 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
17. Study on the Mechanical Properties of Three-Dimensional Directly Binding Hydroxyapatite Powder. Wang Y; Li X; Wei Q; Yang M; Wei S Cell Biochem Biophys; 2015 May; 72(1):289-95. PubMed ID: 25556069 [TBL] [Abstract][Full Text] [Related]
18. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix. Nyberg E; Rindone A; Dorafshar A; Grayson WL Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692 [TBL] [Abstract][Full Text] [Related]
19. Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications. Shavandi A; Bekhit Ael-D; Ali MA; Sun Z; Gould M Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():481-93. PubMed ID: 26249618 [TBL] [Abstract][Full Text] [Related]
20. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]