These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Identification of Lysinibacillus sphaericus Binary toxin binding proteins in a malarial mosquito cell line by proteomics: A novel approach towards improving mosquito control. Riaz MA; Adang MJ; Hua G; Rezende TMT; Rezende AM; Shen GM J Proteomics; 2020 Sep; 227():103918. PubMed ID: 32712372 [TBL] [Abstract][Full Text] [Related]
8. A differential transcriptional profile by Culex quinquefasciatus larvae resistant to Lysinibacillus sphaericus IAB59 highlights genes and pathways associated with the resistance phenotype. Rezende TMT; Rezende AM; Luz Wallau G; Santos Vasconcelos CR; de-Melo-Neto OP; Silva-Filha MHNL; Romão TP Parasit Vectors; 2019 Aug; 12(1):407. PubMed ID: 31429782 [TBL] [Abstract][Full Text] [Related]
9. Culex quinquefasciatus alpha-glucosidase serves as a putative receptor of the Cry48Aa toxin from Lysinibacillus sphaericus. Guo Q; Gao Y; Xing C; Niu Y; Ding L; Dai X Insect Biochem Mol Biol; 2022 Aug; 147():103799. PubMed ID: 35662624 [TBL] [Abstract][Full Text] [Related]
10. Interaction between mosquito-larvicidal Lysinibacillus sphaericus binary toxin components: analysis of complex formation. Kale A; Hire RS; Hadapad AB; D'Souza SF; Kumar V Insect Biochem Mol Biol; 2013 Nov; 43(11):1045-54. PubMed ID: 23974012 [TBL] [Abstract][Full Text] [Related]
11. Anopheles gambiae Ag55 cell line as a model for Lysinibacillus sphaericus Bin toxin action. Hire RS; Hua G; Zhang Q; Mishra R; Adang MJ J Invertebr Pathol; 2015 Nov; 132():105-110. PubMed ID: 26408969 [TBL] [Abstract][Full Text] [Related]
12. Cytotoxic Effects and Intracellular Localization of Bin Toxin from Kanwal S; Abeysinghe S; Srisaisup M; Boonserm P Toxins (Basel); 2021 Apr; 13(4):. PubMed ID: 33921797 [TBL] [Abstract][Full Text] [Related]
13. Cytopathological effects of Bacillus sphaericus Cry48Aa/Cry49Aa toxin on binary toxin-susceptible and -resistant Culex quinquefasciatus larvae. de Melo JV; Jones GW; Berry C; Vasconcelos RH; de Oliveira CM; Furtado AF; Peixoto CA; Silva-Filha MH Appl Environ Microbiol; 2009 Jul; 75(14):4782-9. PubMed ID: 19502449 [TBL] [Abstract][Full Text] [Related]
15. Non conserved residues between Cqm1 and Aam1 mosquito α-glucosidases are critical for the capacity of Cqm1 to bind the Binary toxin from Lysinibacillus sphaericus. Ferreira LM; Romão TP; Nascimento NA; Costa Mda C; Rezende AM; de-Melo-Neto OP; Silva-Filha MH Insect Biochem Mol Biol; 2014 Jul; 50():34-42. PubMed ID: 24746772 [TBL] [Abstract][Full Text] [Related]
16. The C-terminal domain of BinA is responsible for Bacillus sphaericus binary toxin BinA-BinB interaction. Limpanawat S; Promdonkoy B; Boonserm P Curr Microbiol; 2009 Nov; 59(5):509-13. PubMed ID: 19680722 [TBL] [Abstract][Full Text] [Related]
17. PEGylation Enhances Mosquito-Larvicidal Activity of Lysinibacillus sphaericus Binary Toxin. Sharma M; Hire RS; Hadapad AB; Gupta GD; Kumar V Bioconjug Chem; 2017 Feb; 28(2):410-418. PubMed ID: 28118708 [TBL] [Abstract][Full Text] [Related]
18. Cys183 and Cys258 in Cry49Aa toxin from Lysinibacillus sphaericus are essential for toxicity to Culex quinquefasciatus larvae. Guo Q; Ding L; Gao Y; Niu Y; Dai X Arch Microbiol; 2021 Sep; 203(7):4587-4592. PubMed ID: 34160628 [TBL] [Abstract][Full Text] [Related]
19. Co-selection and replacement of resistance alleles to Lysinibacillus sphaericus in a Culex quinquefasciatus colony. Chalegre KD; Tavares DA; Romão TP; de Menezes HS; Nascimento NA; de Oliveira CM; de-Melo-Neto OP; Silva-Filha MH FEBS J; 2015 Sep; 282(18):3592-602. PubMed ID: 26131741 [TBL] [Abstract][Full Text] [Related]
20. An oligomeric complex of BinA/BinB is not formed in-situ in mosquito-larvicidal Lysinibacillus sphaericus ISPC-8. Hire RS; Sharma M; Hadapad AB; Kumar V J Invertebr Pathol; 2014 Oct; 122():44-7. PubMed ID: 25196469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]