BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28407093)

  • 1. Non-Random Inversion Landscapes in Prokaryotic Genomes Are Shaped by Heterogeneous Selection Pressures.
    Repar J; Warnecke T
    Mol Biol Evol; 2017 Aug; 34(8):1902-1911. PubMed ID: 28407093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection for chromosome architecture in bacteria.
    Hendrickson H; Lawrence JG
    J Mol Evol; 2006 May; 62(5):615-29. PubMed ID: 16612541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of replication-related mutation and selection pressures in bacterial chromosomes and plasmids using generalised GC skew index.
    Arakawa K; Suzuki H; Tomita M
    BMC Genomics; 2009 Dec; 10():640. PubMed ID: 20042086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of genome rearrangement in bacterial populations.
    Darling AE; Miklós I; Ragan MA
    PLoS Genet; 2008 Jul; 4(7):e1000128. PubMed ID: 18650965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for symmetric chromosomal inversions around the replication origin in bacteria.
    Eisen JA; Heidelberg JF; White O; Salzberg SL
    Genome Biol; 2000; 1(6):RESEARCH0011. PubMed ID: 11178265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication-associated inversions are the dominant form of bacterial chromosome structural variation.
    D'Iorio M; Dewar K
    Life Sci Alliance; 2023 Jan; 6(1):. PubMed ID: 36261227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecophysiological significance of scale-dependent patterns in prokaryotic genomes unveiled by a combination of statistic and genometric analyses.
    Garcia JA; Bartumeus F; Roche D; Giraldo J; Stanley HE; Casamayor EO
    Genomics; 2008 Jun; 91(6):538-43. PubMed ID: 18420375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexibility and symmetry of prokaryotic genome rearrangement reveal lineage-associated core-gene-defined genome organizational frameworks.
    Kang Y; Gu C; Yuan L; Wang Y; Zhu Y; Li X; Luo Q; Xiao J; Jiang D; Qian M; Ahmed Khan A; Chen F; Zhang Z; Yu J
    mBio; 2014 Nov; 5(6):e01867. PubMed ID: 25425232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Group-theoretic models of the inversion process in bacterial genomes.
    Egri-Nagy A; Gebhardt V; Tanaka MM; Francis AR
    J Math Biol; 2014 Jul; 69(1):243-65. PubMed ID: 23793228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highways of gene sharing in prokaryotes.
    Beiko RG; Harlow TJ; Ragan MA
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14332-7. PubMed ID: 16176988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Causes of insertion sequences abundance in prokaryotic genomes.
    Touchon M; Rocha EP
    Mol Biol Evol; 2007 Apr; 24(4):969-81. PubMed ID: 17251179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genometric analyses of the organization of circular chromosomes: a universal pressure determines the direction of ribosomal RNA genes transcription relative to chromosome replication.
    Guy L; Roten CA
    Gene; 2004 Sep; 340(1):45-52. PubMed ID: 15556293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flip-flop around the origin and terminus of replication in prokaryotic genomes.
    Mackiewicz P; Mackiewicz D; Kowalczuk M; Cebrat S
    Genome Biol; 2001; 2(12):INTERACTIONS1004. PubMed ID: 11790247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological Impact of a Large-Scale Genomic Inversion That Grossly Disrupts the Relative Positions of the Origin and Terminus Loci of the Streptococcus pyogenes Chromosome.
    Savic DJ; Nguyen SV; McCullor K; McShan WM
    J Bacteriol; 2019 Sep; 201(17):. PubMed ID: 31235514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of replication in circular prokaryotic chromosomes.
    Worning P; Jensen LJ; Hallin PF; Staerfeldt HH; Ussery DW
    Environ Microbiol; 2006 Feb; 8(2):353-61. PubMed ID: 16423021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible genomic islands as drivers of genome evolution.
    Rodriguez-Valera F; Martin-Cuadrado AB; López-Pérez M
    Curr Opin Microbiol; 2016 Jun; 31():154-160. PubMed ID: 27085300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The differential killing of genes by inversions in prokaryotic genomes.
    Mackiewicz P; Mackiewicz D; Gierlik A; Kowalczuk M; Nowicka A; Dudkiewicz M; Dudek MR; Cebrat S
    J Mol Evol; 2001 Dec; 53(6):615-21. PubMed ID: 11677621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes.
    Novichkov PS; Wolf YI; Dubchak I; Koonin EV
    J Bacteriol; 2009 Jan; 191(1):65-73. PubMed ID: 18978059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detailed analysis of inversions predicted between two human genomes: errors, real polymorphisms, and their origin and population distribution.
    Vicente-Salvador D; Puig M; Gayà-Vidal M; Pacheco S; Giner-Delgado C; Noguera I; Izquierdo D; Martínez-Fundichely A; Ruiz-Herrera A; Estivill X; Aguado C; Lucas-Lledó JI; Cáceres M
    Hum Mol Genet; 2017 Feb; 26(3):567-581. PubMed ID: 28025331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased Mutation Rate Is Linked to Genome Reduction in Prokaryotes.
    Bourguignon T; Kinjo Y; Villa-Martín P; Coleman NV; Tang Q; Arab DA; Wang Z; Tokuda G; Hongoh Y; Ohkuma M; Ho SYW; Pigolotti S; Lo N
    Curr Biol; 2020 Oct; 30(19):3848-3855.e4. PubMed ID: 32763167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.