These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28407716)

  • 1. Killing of bacteria by copper, cadmium, and silver surfaces reveals relevant physicochemical parameters.
    Luo J; Hein C; Mücklich F; Solioz M
    Biointerphases; 2017 Apr; 12(2):020301. PubMed ID: 28407716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.
    Hahn C; Hans M; Hein C; Mancinelli RL; Mücklich F; Wirth R; Rettberg P; Hellweg CE; Moeller R
    Astrobiology; 2017 Dec; 17(12):1183-1191. PubMed ID: 29116818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical properties of copper important for its antibacterial activity and development of a unified model.
    Hans M; Mathews S; Mücklich F; Solioz M
    Biointerphases; 2015 Mar; 11(1):018902. PubMed ID: 26577181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of chlorides and phosphates on the antiadhesive, antibacterial, and electrochemical properties of an electroplated copper-silver alloy.
    Ciacotich N; Kilstrup M; Møller P; Gram L
    Biointerphases; 2019 Apr; 14(2):021005. PubMed ID: 30966754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial properties of ternary eutectic aluminum alloys.
    Hahn C; Hans M; Hein C; Dennstedt A; Mücklich F; Rettberg P; Hellweg CE; Leichert LI; Rensing C; Moeller R
    Biometals; 2018 Oct; 31(5):759-770. PubMed ID: 29946993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Roughness of Cu-Bearing Stainless Steel Affects Its Contact-Killing Efficiency by Mediating the Interfacial Interaction with Bacteria.
    Zhang X; Yang C; Xi T; Zhao J; Yang K
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2303-2315. PubMed ID: 33395246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid in situ assessment of Cu-ion mediated effects and antibacterial efficacy of copper surfaces.
    Rosenberg M; Vija H; Kahru A; Keevil CW; Ivask A
    Sci Rep; 2018 May; 8(1):8172. PubMed ID: 29802355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bactericidal activity of copper and niobium-alloyed austenitic stainless steel.
    Baena MI; Márquez MC; Matres V; Botella J; Ventosa A
    Curr Microbiol; 2006 Dec; 53(6):491-5. PubMed ID: 17072670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface structure influences contact killing of bacteria by copper.
    Zeiger M; Solioz M; Edongué H; Arzt E; Schneider AS
    Microbiologyopen; 2014 Jun; 3(3):327-32. PubMed ID: 24740976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence of Monovalent Copper Over Divalent in Killing Escherichia coli and Staphylococcus aureus.
    Saphier M; Silberstein E; Shotland Y; Popov S; Saphier O
    Curr Microbiol; 2018 Apr; 75(4):426-430. PubMed ID: 29260302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial activity of copper and silver nanofilms on nosocomial bacterial species.
    Codiţă I; Caplan DM; Drăgulescu EC; Lixandru BE; Coldea IL; Dragomirescu CC; Surdu-Bob C; Bădulescu M
    Roum Arch Microbiol Immunol; 2010; 69(4):204-12. PubMed ID: 21462835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced antibacterial activity of silver-ruthenium coated hollow microparticles.
    Heiss A; Freisinger B; Held-Föhn E
    Biointerphases; 2017 Dec; 12(5):05G608. PubMed ID: 29212331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver-, calcium-, and copper molybdate compounds: Preparation, antibacterial activity, and mechanisms.
    Tanasic D; Rathner A; Kollender JP; Rathner P; Müller N; Zelenka KC; Hassel AW; Mardare CC
    Biointerphases; 2017 Nov; 12(5):05G607. PubMed ID: 29113436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards long-lasting antibacterial stainless steel surfaces by combining double glow plasma silvering with active screen plasma nitriding.
    Dong Y; Li X; Tian L; Bell T; Sammons RL; Dong H
    Acta Biomater; 2011 Jan; 7(1):447-57. PubMed ID: 20727993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and in-vitro antibacterial properties of a functionally graded Ag impregnated composite surface.
    Ji X; Li X; Dong Y; Sammons R; Tian L; Yu H; Zhang W; Dong H
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():150-158. PubMed ID: 30889685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Resolution Microscopical Studies of Contact Killing Mechanisms on Copper-Based Surfaces.
    Chang T; Babu RP; Zhao W; Johnson CM; Hedström P; Odnevall I; Leygraf C
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49402-49413. PubMed ID: 34618446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of copper oxide nanoparticles for antimicrobial applications.
    Ren G; Hu D; Cheng EW; Vargas-Reus MA; Reip P; Allaker RP
    Int J Antimicrob Agents; 2009 Jun; 33(6):587-90. PubMed ID: 19195845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel.
    Cowan MM; Abshire KZ; Houk SL; Evans SM
    J Ind Microbiol Biotechnol; 2003 Feb; 30(2):102-6. PubMed ID: 12612784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of
    Versoza M; Jung W; Barabad ML; Ko S; Kim M; Park D
    Int J Environ Res Public Health; 2019 Oct; 16(20):. PubMed ID: 31615027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [In vitro evaluation of antibacterial activity and cytocompatibility of antibacterial stainless steel containing copper].
    Guan J; Guo L; Fu Y; Chai H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):333-7. PubMed ID: 23858758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.