These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 28407804)

  • 41. Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light.
    Lin L; Liu L; Zhao B; Xie R; Lin W; Li H; Li Y; Shi M; Chen YG; Springer TA; Chen X
    Nat Nanotechnol; 2015 May; 10(5):465-71. PubMed ID: 25775150
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors.
    Goumans MJ; Valdimarsdottir G; Itoh S; Rosendahl A; Sideras P; ten Dijke P
    EMBO J; 2002 Apr; 21(7):1743-53. PubMed ID: 11927558
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis.
    Zerr P; Palumbo-Zerr K; Huang J; Tomcik M; Sumova B; Distler O; Schett G; Distler JH
    Ann Rheum Dis; 2016 Jan; 75(1):226-33. PubMed ID: 25180292
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plasticity of TGF-β signaling.
    Cellière G; Fengos G; Hervé M; Iber D
    BMC Syst Biol; 2011 Nov; 5():184. PubMed ID: 22051045
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of autophagy by transforming growth factor-β (TGF-β) signaling.
    Suzuki HI; Kiyono K; Miyazono K
    Autophagy; 2010 Jul; 6(5):645-7. PubMed ID: 20458184
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Maid is a negative regulator of transforming growth factor-β-induced cell migration.
    Motizuki M; Saitoh M; Miyazawa K
    J Biochem; 2015 Nov; 158(5):435-44. PubMed ID: 26002959
    [TBL] [Abstract][Full Text] [Related]  

  • 47. TGF-β inhibits metastasis in late stage human squamous cell carcinoma of the skin by a mechanism that does not involve Id1.
    Ganapathy A; Paterson IC; Prime SS; Eveson JW; Pring M; Price N; Threadgold SP; Davies M
    Cancer Lett; 2010 Dec; 298(1):107-18. PubMed ID: 20663607
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Signalling and regulation of collagen I synthesis by ET-1 and TGF-beta1.
    Horstmeyer A; Licht C; Scherr G; Eckes B; Krieg T
    FEBS J; 2005 Dec; 272(24):6297-309. PubMed ID: 16336267
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor.
    Kuratomi G; Komuro A; Goto K; Shinozaki M; Miyazawa K; Miyazono K; Imamura T
    Biochem J; 2005 Mar; 386(Pt 3):461-70. PubMed ID: 15496141
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discoidin domain receptor 2-microRNA 196a-mediated negative feedback against excess type I collagen expression is impaired in scleroderma dermal fibroblasts.
    Makino K; Jinnin M; Aoi J; Hirano A; Kajihara I; Makino T; Sakai K; Fukushima S; Inoue Y; Ihn H
    J Invest Dermatol; 2013 Jan; 133(1):110-9. PubMed ID: 22832484
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transforming growth factor-beta and Smad signalling in kidney diseases.
    Wang W; Koka V; Lan HY
    Nephrology (Carlton); 2005 Feb; 10(1):48-56. PubMed ID: 15705182
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A rule-based model of insulin signalling pathway.
    Di Camillo B; Carlon A; Eduati F; Toffolo GM
    BMC Syst Biol; 2016 Jun; 10(1):38. PubMed ID: 27245161
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A control engineering approach to understanding the TGF-β paradox in cancer.
    Chung SW; Cooper CR; Farach-Carson MC; Ogunnaike BA
    J R Soc Interface; 2012 Jun; 9(71):1389-97. PubMed ID: 22188767
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coupling between feedback loops in autoregulatory networks affects bistability range, open-loop gain and switching times.
    Tiwari A; Igoshin OA
    Phys Biol; 2012 Oct; 9(5):055003. PubMed ID: 23011599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Feedback regulation of EGFR signalling: decision making by early and delayed loops.
    Avraham R; Yarden Y
    Nat Rev Mol Cell Biol; 2011 Feb; 12(2):104-17. PubMed ID: 21252999
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Equilibria and stability of a class of positive feedback loops.
    López-Caamal F; Middleton RH; Huber HJ
    J Math Biol; 2014 Feb; 68(3):609-45. PubMed ID: 23358701
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The complexity of biological control systems: An autophagy case study.
    Pavel M; Tanasa R; Park SJ; Rubinsztein DC
    Bioessays; 2022 Mar; 44(3):e2100224. PubMed ID: 35032045
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of feedback loops embedded in cellular circuits by investigating non-causal impulse response components.
    Dong CY; Yoon TW; Bates DG; Cho KH
    J Math Biol; 2010 Feb; 60(2):285-312. PubMed ID: 19333603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational Modelling of Cancer Development and Growth: Modelling at Multiple Scales and Multiscale Modelling.
    Szymańska Z; Cytowski M; Mitchell E; Macnamara CK; Chaplain MAJ
    Bull Math Biol; 2018 May; 80(5):1366-1403. PubMed ID: 28634857
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of spontaneous emergence of cell polarity with delayed negative feedback.
    Liu Y; Lo WC
    Math Biosci Eng; 2019 Feb; 16(3):1392-1413. PubMed ID: 30947426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.