These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28407966)

  • 1. Detection of several common adulterants in raw milk by MID-infrared spectroscopy and one-class and multi-class multivariate strategies.
    Gondim CS; Junqueira RG; Souza SVC; Ruisánchez I; Callao MP
    Food Chem; 2017 Sep; 230():68-75. PubMed ID: 28407966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opportunities for fraudsters: When would profitable milk adulterations go unnoticed by common, standardized FTIR measurements?
    Yang Y; Hettinga KA; Erasmus SW; Pustjens AM; van Ruth SM
    Food Res Int; 2020 Oct; 136():109543. PubMed ID: 32846598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining performance parameters in qualitative multivariate methods using probability of detection (POD) curves. Case study: Two common milk adulterants.
    Gondim CS; Junqueira RG; de Souza SVC; Callao MP; Ruisánchez I
    Talanta; 2017 Jun; 168():23-30. PubMed ID: 28391847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of main fruits in adulterated nectars by ATR-FTIR spectroscopy combined with multivariate calibration and variable selection methods.
    Miaw CSW; Assis C; Silva ARCS; Cunha ML; Sena MM; de Souza SVC
    Food Chem; 2018 Jul; 254():272-280. PubMed ID: 29548454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive approach for milk adulteration detection using inherent bio-physical properties as 'Universal Markers': Towards a miniaturized adulteration detection platform.
    Tripathy S; Ghole AR; Deep K; Vanjari SRK; Singh SG
    Food Chem; 2017 Feb; 217():756-765. PubMed ID: 27664695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the effects of the adulterants in milk using direct-infusion high-resolution mass spectrometry.
    Guerreiro TM; de Oliveira DN; Melo CFOR; de Oliveira Lima E; Ribeiro MDS; Catharino RR
    Food Res Int; 2018 Jun; 108():498-504. PubMed ID: 29735085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA.
    Botelho BG; Reis N; Oliveira LS; Sena MM
    Food Chem; 2015 Aug; 181():31-7. PubMed ID: 25794717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multivariate screening in food adulteration: untargeted versus targeted modelling.
    López MI; Trullols E; Callao MP; Ruisánchez I
    Food Chem; 2014 Mar; 147():177-81. PubMed ID: 24206702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef.
    Meza-Márquez OG; Gallardo-Velázquez T; Osorio-Revilla G
    Meat Sci; 2010 Oct; 86(2):511-9. PubMed ID: 20598447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Two-Dimensional Hetero-Spectral Near-Infrared and Mid-Infrared Correlation Spectroscopy for Discrimination Adulterated Milk].
    Yu G; Yang RJ; Lü AJ; Tan EZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Aug; 35(8):2099-102. PubMed ID: 26672274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid detection and quantification of milk adulterants using a nanoclusters-based fluorescent optical tongue.
    Ghohestani E; Tashkhourian J; Hemmateenejad B
    Food Chem; 2024 Oct; 456():139973. PubMed ID: 38852440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of melamine and sucrose as adulterants in milk powder using near-infrared spectroscopy with DD-SIMCA as one-class classifier and MCR-ALS as a means to provide pure profiles of milk and of both adulterants with forensic evidence: A short communication.
    Mazivila SJ; Páscoa RNMJ; Castro RC; Ribeiro DSM; Santos JLM
    Talanta; 2020 Aug; 216():120937. PubMed ID: 32456931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of hand-held and portable infrared spectrometers in bovine milk analysis.
    Santos PM; Pereira-Filho ER; Rodriguez-Saona LE
    J Agric Food Chem; 2013 Feb; 61(6):1205-11. PubMed ID: 23339381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of near-infrared spectroscopy to detect and to quantify adulterants in cow milk.
    Kasemsumran S; Thanapase W; Kiatsoonthon A
    Anal Sci; 2007 Jul; 23(7):907-10. PubMed ID: 17625339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A chemiluminescence method for screening of fluoroquinolones in milk samples based on a multi-pumping flow system.
    Vakh C; Pochivalov A; Koronkiewicz S; Kalinowski S; Postnov V; Bulatov A
    Food Chem; 2019 Jan; 270():10-16. PubMed ID: 30174022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of haloacetic acids in milk and dairy products.
    Cardador MJ; Gallego M
    Food Chem; 2016 Apr; 196():750-6. PubMed ID: 26593550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis.
    Santos PM; Pereira-Filho ER; Rodriguez-Saona LE
    Food Chem; 2013 May; 138(1):19-24. PubMed ID: 23265450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of coffee adulteration with soybean and corn by capillary electrophoresis-tandem mass spectrometry.
    Daniel D; Lopes FS; Santos VBD; do Lago CL
    Food Chem; 2018 Mar; 243():305-310. PubMed ID: 29146342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution followed by non-targeted mid-infrared analysis as a workable and cost-effective solution to overcome the blending duality in milk powder adulteration detection.
    Romero Gonzalez RR; Cobuccio L; Delatour T
    Food Chem; 2019 Oct; 295():42-50. PubMed ID: 31174777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Identification of adulterants in adulterated milks by near infrared spectroscopy combined with non-linear pattern recognition methods].
    Ni LJ; Zhong L; Zhang X; Zhang LG; Huang SX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2673-8. PubMed ID: 25739206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.