These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 2840857)

  • 21. Identification of calmodulin-sensitive Ca(2+)-transporting ATPase in the plasma membrane of bovine corneal epithelial cell.
    Reinach PS; Holmberg N; Chiesa R
    Biochim Biophys Acta; 1991 Sep; 1068(1):1-8. PubMed ID: 1832560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium ionophore (A23187)- and arachidonic acid-stimulated prostaglandin release from microvascular endothelial cells: effects of calcium antagonists and calmodulin inhibitors.
    Gerritsen ME; Nganele DM; Rodrigues AM
    J Pharmacol Exp Ther; 1987 Mar; 240(3):837-46. PubMed ID: 3104581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular Ca2+ sequestration and release in intact bovine retinal rod outer segments. Role in inactivation of Na-Ca+K exchange.
    Schnetkamp PP; Szerencsei RT
    J Biol Chem; 1993 Jun; 268(17):12449-57. PubMed ID: 8509384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stimulation of calcium uptake in platelet membrane vesicles by adenosine 3',5'-cyclic monophosphate and protein kinase.
    Käser-Glanzmann R; Jakäbovä M; George JN; Lüscher EF
    Biochim Biophys Acta; 1977 May; 466(3):429-40. PubMed ID: 192295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A calmodulin-stimulated Ca2+ pump in plasma-membrane vesicles from Trypanosoma brucei; selective inhibition by pentamidine.
    Benaim G; Lopez-Estraño C; Docampo R; Moreno SN
    Biochem J; 1993 Dec; 296 ( Pt 3)(Pt 3):759-63. PubMed ID: 8280074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Ca2(+)-activated, Mg2(+)-dependent ATPase with high affinities for both Ca2+ and Mg2+ in vascular smooth muscle microsomes: comparison with plasma membrane Ca2(+)-pump ATPase.
    Sun HT; Yoshida Y; Imai S
    J Biochem; 1990 Nov; 108(5):730-6. PubMed ID: 1964453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP-dependent calcium transport and its correlation with Ca2+ -ATPase activity in basolateral plasma membranes of rat duodenum.
    Ghijsen WE; De Jong MD; Van Os CH
    Biochim Biophys Acta; 1982 Jul; 689(2):327-36. PubMed ID: 6214277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of lipid intermediates on Ca2+ and Na+ permeability and (Na+ + K+)-ATPase of cardiac sarcolemma. A possible role in myocardial ischemia.
    Lamers JM; Stinis HT; Montfoort A; Hülsmann WC
    Biochim Biophys Acta; 1984 Jul; 774(1):127-37. PubMed ID: 6329291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes.
    Kribben A; Tyrakowski T; Schulz I
    Am J Physiol; 1983 May; 244(5):G480-90. PubMed ID: 6133452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Active Ca2+ transport in plasma membranes of branchial epithelium of the North-American eel, Anguilla rostrata LeSueur.
    Flik G; Wendelaar Bonga SE; Fenwick JC
    Biol Cell; 1985; 55(3):265-72. PubMed ID: 2423169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on endothelin release and Na,K transport in porcine lens.
    Okafor MC; Mukhopadhyay P; Delamere NA
    Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):790-6. PubMed ID: 11867600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Na+/H+ exchanger and its relation to oxidative effects in plasma membrane vesicles from lens fibers.
    Ye JJ; Zadunaisky JA
    Exp Eye Res; 1992 Aug; 55(2):251-60. PubMed ID: 1330662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for two functionally different membrane fractions in bovine retinal rod outer segments.
    Bauer PJ
    J Physiol; 1988 Jul; 401():309-27. PubMed ID: 2845062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hepatic adenosine triphosphate-dependent Ca2+ transport is mediated by distinct carriers on rat basolateral and canalicular membranes.
    Blitzer BL; Hostetler BR; Scott KA
    J Clin Invest; 1989 Apr; 83(4):1319-25. PubMed ID: 2703534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ATP-dependent calcium pump and Na+-Ca2+ exchange in plasma membrane vesicles from squid optic nerve.
    Osses L; Condrescu M; DiPolo R
    Biochim Biophys Acta; 1986 Sep; 860(3):583-91. PubMed ID: 3638146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Demonstration of calmodulin-sensitive calcium translocation by isolated osteoclast plasma membrane vesicles.
    Bekker PJ; Gay CV
    Calcif Tissue Int; 1992 Oct; 51(4):312-6. PubMed ID: 1330240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of intracellular calcium on the sodium pump of human red cells.
    Brown AM; Lew VL
    J Physiol; 1983 Oct; 343():455-93. PubMed ID: 6315922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Response of the rat erythrocyte glycolytic system to hyperosmotic shrinkage].
    Levko AV; Aksentsev SL; Gurlo TG; Konev SV; Orlov SN
    Biofizika; 1995; 40(2):377-82. PubMed ID: 7578342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Orientation of synaptic plasma membrane vesicles containing calcium pump and sodium-calcium exchange activities.
    Gill DL; Chueh SH; Noel MW; Ueda T
    Biochim Biophys Acta; 1986 Mar; 856(1):165-73. PubMed ID: 3006769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulation of ATP-driven Ca2+ pump in the basal-lateral plasma membranes of kidney cortex during compensatory renal growth.
    Hadzić A; Sabolić I; Banfić H
    Biochim Biophys Acta; 1990 Mar; 1022(3):265-72. PubMed ID: 2156554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.