These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 2840858)

  • 1. Comparison of the ability of ferric complexes to catalyze microsomal chemiluminescence, lipid peroxidation, and hydroxyl radical generation.
    Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1988 Aug; 264(2):482-91. PubMed ID: 2840858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between paraquat and ferric complexes in the microsomal generation of oxygen radicals.
    Puntarulo S; Cederbaum AI
    Biochem Pharmacol; 1989 Sep; 38(17):2911-8. PubMed ID: 2550014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemiluminescence studies on the generation of oxygen radicals from the interaction of NADPH-cytochrome P-450 reductase with iron.
    Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1987 Nov; 258(2):510-8. PubMed ID: 2823718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADH-dependent microsomal interaction with ferric complexes and production of reactive oxygen intermediates.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1989 Dec; 275(2):540-50. PubMed ID: 2556968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyl radicals are not involved in NADPH dependent microsomal lipid peroxidation.
    Bast A; Steeghs MH
    Experientia; 1986 May; 42(5):555-6. PubMed ID: 3011492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
    Dicker E; Cederbaum AI
    Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased NADPH-dependent chemiluminescence by microsomes after chronic ethanol consumption.
    Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1988 Nov; 266(2):435-45. PubMed ID: 3190238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen radical generation by microsomes: role of iron and implications for alcohol metabolism and toxicity.
    Cederbaum AI
    Free Radic Biol Med; 1989; 7(5):559-67. PubMed ID: 2558984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of hydroxyl radicals during the enzymatic reductions of the Fe3+-ADP-phosphate-adriamycin and Fe3+-ADP-EDTA systems. Less involvement of hydroxyl radical and a great importance of proposed perferryl ion complexes in lipid peroxidation.
    Sugioka K; Nakano H; Nakano M; Tero-Kubota S; Ikegami Y
    Biochim Biophys Acta; 1983 Oct; 753(3):411-21. PubMed ID: 6311278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of microsomal oxidation of alcohols and of hydroxyl-radical-scavenging agents by the iron-chelating agent desferrioxamine.
    Cederbaum AI; Dicker E
    Biochem J; 1983 Jan; 210(1):107-13. PubMed ID: 6303308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals.
    Kukiełka E; Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1989 Sep; 273(2):319-30. PubMed ID: 2774554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstituted microsomal lipid peroxidation: ADP-Fe3+-dependent peroxidation of phospholipid vesicles containing NADPH-cytochrome P450 reductase and cytochrome P450.
    Morehouse LA; Aust SD
    Free Radic Biol Med; 1988; 4(5):269-77. PubMed ID: 3129344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cytochrome b5 in NADH-dependent microsomal reduction of ferric complexes, lipid peroxidation, and hydrogen peroxide generation.
    Yang MX; Cederbaum AI
    Arch Biochem Biophys; 1995 Dec; 324(2):282-92. PubMed ID: 8554320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of iron, hydrogen peroxide and reactive oxygen species in microsomal oxidation of glycerol to formaldehyde.
    Clejan LA; Cederbaum AI
    Arch Biochem Biophys; 1991 Feb; 285(1):83-9. PubMed ID: 1846735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-concentration dependence of microsomal chemiluminescence.
    Puntarulo S; Turrens JF; Cederbaum AI
    Free Radic Biol Med; 1989; 7(3):269-73. PubMed ID: 2550333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement for iron for the production of hydroxyl radicals by rat liver quinone reductase.
    Dicker E; Cederbaum AI
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1282-90. PubMed ID: 7690400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of microsomal production of reactive oxygen intermediates by rifamycin SV: effect of ferric complexes and comparisons between NADPH and NADH.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1992 Nov; 298(2):602-11. PubMed ID: 1329662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes.
    Cederbaum AI; Qureshi A
    Biochem Pharmacol; 1982 Feb; 31(3):329-35. PubMed ID: 6280725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microsomal interactions between iron, paraquat, and menadione: effect on hydroxyl radical production and alcohol oxidation.
    Beloqui O; Cederbaum AI
    Arch Biochem Biophys; 1985 Oct; 242(1):187-96. PubMed ID: 2996429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.