These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28408638)

  • 1. Blindfolding during wakefulness causes decrease in sleep slow wave activity.
    Korf EM; Mölle M; Born J; Ngo HV
    Physiol Rep; 2017 Apr; 5(7):. PubMed ID: 28408638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual imagery and visual perception induce similar changes in occipital slow waves of sleep.
    Bernardi G; Betta M; Cataldi J; Leo A; Haba-Rubio J; Heinzer R; Cirelli C; Tononi G; Pietrini P; Ricciardi E; Siclari F
    J Neurophysiol; 2019 Jun; 121(6):2140-2152. PubMed ID: 30943100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.
    Rodriguez AV; Funk CM; Vyazovskiy VV; Nir Y; Tononi G; Cirelli C
    J Neurosci; 2016 Dec; 36(49):12436-12447. PubMed ID: 27927960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep.
    Huber R; Esser SK; Ferrarelli F; Massimini M; Peterson MJ; Tononi G
    PLoS One; 2007 Mar; 2(3):e276. PubMed ID: 17342210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves.
    Esser SK; Hill SL; Tononi G
    Sleep; 2007 Dec; 30(12):1617-30. PubMed ID: 18246972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Evolution of visual evoked responses during various states of vigilance in Papio papio (author's transl)].
    Vuillon-Cacciuttolo G; Balzamo E; Naquet R
    Brain Res; 1975 Dec; 100(3):509-21. PubMed ID: 172195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat.
    Hanlon EC; Faraguna U; Vyazovskiy VV; Tononi G; Cirelli C
    Sleep; 2009 Jun; 32(6):719-29. PubMed ID: 19544747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What drives slow wave activity during early non-REM sleep: Learning during prior wake or effort?
    Li Z; Sheth AB; Sheth BR
    PLoS One; 2017; 12(10):e0185681. PubMed ID: 29028805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity.
    Huber R; Ghilardi MF; Massimini M; Ferrarelli F; Riedner BA; Peterson MJ; Tononi G
    Nat Neurosci; 2006 Sep; 9(9):1169-76. PubMed ID: 16936722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local experience-dependent changes in the wake EEG after prolonged wakefulness.
    Hung CS; Sarasso S; Ferrarelli F; Riedner B; Ghilardi MF; Cirelli C; Tononi G
    Sleep; 2013 Jan; 36(1):59-72. PubMed ID: 23288972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness.
    Lancel M; van Riezen H; Glatt A
    Brain Res; 1992 Nov; 596(1-2):285-95. PubMed ID: 1467989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical and thalamic visual evoked potentials during sleep-wake states and spike-wave discharges in the rat.
    Meeren HK; Van Luijtelaar EL; Coenen AM
    Electroencephalogr Clin Neurophysiol; 1998 Apr; 108(3):306-19. PubMed ID: 9607520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow-wave sleep deficiency and enhancement: implications for insomnia and its management.
    Dijk DJ
    World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():22-8. PubMed ID: 20509829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced slow-wave activity within NREM sleep in the cortical and subcortical EEG of the cat after sleep deprivation.
    Lancel M; van Riezen H; Glatt A
    Sleep; 1992 Apr; 15(2):102-18. PubMed ID: 1579784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The visual scoring of sleep and arousal in infants and children.
    Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C
    J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic refinement during development and its effect on slow-wave activity: a computational study.
    Hoel EP; Albantakis L; Cirelli C; Tononi G
    J Neurophysiol; 2016 Apr; 115(4):2199-213. PubMed ID: 26843602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theta activity in the waking EEG is a marker of sleep propensity in the rat.
    Vyazovskiy VV; Tobler I
    Brain Res; 2005 Jul; 1050(1-2):64-71. PubMed ID: 15975563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep.
    Faraguna U; Vyazovskiy VV; Nelson AB; Tononi G; Cirelli C
    J Neurosci; 2008 Apr; 28(15):4088-95. PubMed ID: 18400908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual evoked potentials during spontaneously occurring spike-wave discharges in rats.
    Inoue M; Van Luijtelaar EL; Vossen JM; Coenen AM
    Electroencephalogr Clin Neurophysiol; 1992; 84(2):172-9. PubMed ID: 1372232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of short-term slow wave sleep homeostasis and its disruption by minocycline in the laboratory mouse.
    Wisor JP; Clegern WC
    Neurosci Lett; 2011 Mar; 490(3):165-9. PubMed ID: 21111032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.