These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28408765)

  • 1. Active Mediation of Plasmon Enhanced Localized Exciton Generation, Carrier Diffusion and Enhanced Photon Emission.
    Haq S; Addamane S; Kafle B; Huang D; Balakrishnan G; Habteyes TG
    Sci Rep; 2017 Apr; 7(1):864. PubMed ID: 28408765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental and theoretical mechanistic study of biexciton quantum yield enhancement in single quantum dots near gold nanoparticles.
    Dey S; Zhou Y; Tian X; Jenkins JA; Chen O; Zou S; Zhao J
    Nanoscale; 2015 Apr; 7(15):6851-8. PubMed ID: 25806486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters.
    Marocico CA; Zhang X; Bradley AL
    J Chem Phys; 2016 Jan; 144(2):024108. PubMed ID: 26772555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures.
    Chen M; Shao L; Kershaw SV; Yu H; Wang J; Rogach AL; Zhao N
    ACS Nano; 2014 Aug; 8(8):8208-16. PubMed ID: 25020202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-exciton interaction strongly increases the efficiency of a quantum dot-based near-infrared photodetector operating in the two-photon absorption mode under normal conditions.
    Krivenkov V; Samokhvalov P; Vasil'evskii IS; Kargin NI; Nabiev I
    Nanoscale; 2021 Dec; 13(47):19929-19935. PubMed ID: 34812464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods.
    Cao J; Zhang H; Pi X; Li D; Yang D
    Nanoscale Adv; 2021 Aug; 3(16):4810-4815. PubMed ID: 36134309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Carrier Diffusion Length and Quantum Efficiency through Photoinduced Charge Transfer in Layered Graphene-Semiconducting Quantum Dot Devices.
    Dutta R; Pradhan A; Mondal P; Kakkar S; Sai TP; Ghosh A; Basu JK
    ACS Appl Mater Interfaces; 2021 May; 13(20):24295-24303. PubMed ID: 33998798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures.
    Dey S; Zhou Y; Sun Y; Jenkins JA; Kriz D; Suib SL; Chen O; Zou S; Zhao J
    Nanoscale; 2018 Jan; 10(3):1038-1046. PubMed ID: 29265148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton Recombination, Energy-, and Charge Transfer in Single- and Multilayer Quantum-Dot Films on Silver Plasmonic Resonators.
    Shin T; Cho KS; Yun DJ; Kim J; Li XS; Moon ES; Baik CW; Il Kim S; Kim M; Choi JH; Park GS; Shin JK; Hwang S; Jung TS
    Sci Rep; 2016 May; 6():26204. PubMed ID: 27184469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong increase in the effective two-photon absorption cross-section of excitons in quantum dots due to the nonlinear interaction with localized plasmons in gold nanorods.
    Krivenkov V; Samokhvalov P; Sánchez-Iglesias A; Grzelczak M; Nabiev I; Rakovich Y
    Nanoscale; 2021 Mar; 13(8):4614-4623. PubMed ID: 33605966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron emissions in InAs quantum dots containing a nitrogen incorporation induced defect state: the influence of thermal annealing.
    Chen JF; Yu CC; Yang CH
    Nanotechnology; 2008 Dec; 19(49):495201. PubMed ID: 21730663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots.
    Park Y; Pravitasari A; Raymond JE; Batteas JD; Son DH
    ACS Nano; 2013 Dec; 7(12):10544-51. PubMed ID: 24215453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Imaging of Long-Range Exciton Transport in Quantum Dot Superlattices by Ultrafast Microscopy.
    Yoon SJ; Guo Z; Dos Santos Claro PC; Shevchenko EV; Huang L
    ACS Nano; 2016 Jul; 10(7):7208-15. PubMed ID: 27387010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the Quantum Dot (QD)/Mediator Interface for Optimal Efficiency of QD-Sensitized Near-Infrared-to-Visible Photon Upconversion Systems.
    Xu Z; Huang Z; Li C; Huang T; Evangelista FA; Tang ML; Lian T
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36558-36567. PubMed ID: 32677433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonically-powered hot carrier induced modulation of light emission in a two-dimensional GaAs semiconductor quantum well.
    Ashalley E; Gryczynski K; Wang Z; Salamo G; Neogi A
    Nanoscale; 2019 Mar; 11(9):3827-3836. PubMed ID: 30633286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of plasmonic array geometry on energy transfer from a quantum well to a quantum dot layer.
    Higgins LJ; Marocico CA; Karanikolas VD; Bell AP; Gough JJ; Murphy GP; Parbrook PJ; Bradley AL
    Nanoscale; 2016 Oct; 8(42):18170-18179. PubMed ID: 27740658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ag colloids and arrays for plasmonic non-radiative energy transfer from quantum dots to a quantum well.
    Murphy GP; Gough JJ; Higgins LJ; Karanikolas VD; Wilson KM; Garcia Coindreau JA; Zubialevich VZ; Parbrook PJ; Bradley AL
    Nanotechnology; 2017 Mar; 28(11):115401. PubMed ID: 28140370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of emission photon statistics from single quantum dots using metal/SiO
    Naiki H; Oikawa H; Masuo S
    Photochem Photobiol Sci; 2017 Apr; 16(4):489-498. PubMed ID: 27929197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.