These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28409085)

  • 1. Mechanical properties of spindle poles are symmetrically balanced.
    Suzuki K; Itabashi T; Ishiwata S
    Biophys Physicobiol; 2017; 14():1-11. PubMed ID: 28409085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity.
    Walczak CE; Vernos I; Mitchison TJ; Karsenti E; Heald R
    Curr Biol; 1998 Jul 30-Aug 13; 8(16):903-13. PubMed ID: 9707401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balanced activity of three mitotic motors is required for bipolar spindle assembly and chromosome segregation.
    van Heesbeen RG; Tanenbaum ME; Medema RH
    Cell Rep; 2014 Aug; 8(4):948-56. PubMed ID: 25127142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spindle pole organization in Drosophila S2 cells by dynein, abnormal spindle protein (Asp), and KLP10A.
    Morales-Mulia S; Scholey JM
    Mol Biol Cell; 2005 Jul; 16(7):3176-86. PubMed ID: 15888542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opposing motors provide mechanical and functional robustness in the human spindle.
    Neahring L; Cho NH; Dumont S
    Dev Cell; 2021 Nov; 56(21):3006-3018.e5. PubMed ID: 34614397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromechanics of the vertebrate meiotic spindle examined by stretching along the pole-to-pole axis.
    Takagi J; Itabashi T; Suzuki K; Shimamoto Y; Kapoor TM; Ishiwata S
    Biophys J; 2014 Feb; 106(3):735-40. PubMed ID: 24507614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization.
    Heald R; Tournebize R; Habermann A; Karsenti E; Hyman A
    J Cell Biol; 1997 Aug; 138(3):615-28. PubMed ID: 9245790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of spindle-pole organization are influenced by kinetochore activity in mammalian cells.
    Manning AL; Compton DA
    Curr Biol; 2007 Feb; 17(3):260-5. PubMed ID: 17276919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological growth dynamics, mechanical stability, and active microtubule mechanics underlying spindle self-organization.
    Fukuyama T; Yan L; Tanaka M; Yamaoka M; Saito K; Ti SC; Liao CC; Hsia KC; Maeda YT; Shimamoto Y
    Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2209053119. PubMed ID: 36282919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical model of self-organized spindle formation patterns without centrosomes and kinetochores.
    Schaffner SC; José JV
    Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11166-71. PubMed ID: 16844776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TPX2, A novel xenopus MAP involved in spindle pole organization.
    Wittmann T; Wilm M; Karsenti E; Vernos I
    J Cell Biol; 2000 Jun; 149(7):1405-18. PubMed ID: 10871281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of NuMA protein with the kinesin Eg5: its possible role in bipolar spindle assembly and chromosome alignment.
    Iwakiri Y; Kamakura S; Hayase J; Sumimoto H
    Biochem J; 2013 Apr; 451(2):195-204. PubMed ID: 23368718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynein/dynactin regulate metaphase spindle length by targeting depolymerizing activities to spindle poles.
    Gaetz J; Kapoor TM
    J Cell Biol; 2004 Aug; 166(4):465-71. PubMed ID: 15314063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directly probing the mechanical properties of the spindle and its matrix.
    Gatlin JC; Matov A; Danuser G; Mitchison TJ; Salmon ED
    J Cell Biol; 2010 Feb; 188(4):481-9. PubMed ID: 20176922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eg5 causes elongation of meiotic spindles when flux-associated microtubule depolymerization is blocked.
    Shirasu-Hiza M; Perlman ZE; Wittmann T; Karsenti E; Mitchison TJ
    Curr Biol; 2004 Nov; 14(21):1941-5. PubMed ID: 15530396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric recruitment of dynein to spindle poles and microtubules promotes proper spindle orientation in yeast.
    Grava S; Schaerer F; Faty M; Philippsen P; Barral Y
    Dev Cell; 2006 Apr; 10(4):425-39. PubMed ID: 16580990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetochore-mediated outward force promotes spindle pole separation in fission yeast.
    Shirasugi Y; Sato M
    Mol Biol Cell; 2019 Oct; 30(22):2802-2813. PubMed ID: 31532702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubule End-Clustering Maintains a Steady-State Spindle Shape.
    Hueschen CL; Galstyan V; Amouzgar M; Phillips R; Dumont S
    Curr Biol; 2019 Feb; 29(4):700-708.e5. PubMed ID: 30744975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic foundations of the metaphase II spindle of human oocytes matured in vivo and in vitro.
    Coticchio G; Guglielmo MC; Dal Canto M; Fadini R; Mignini Renzini M; De Ponti E; Brambillasca F; Albertini DF
    Hum Reprod; 2013 Dec; 28(12):3271-82. PubMed ID: 24129615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A force balance model of early spindle pole separation in Drosophila embryos.
    Cytrynbaum EN; Scholey JM; Mogilner A
    Biophys J; 2003 Feb; 84(2 Pt 1):757-69. PubMed ID: 12547760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.