These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 28409092)
1. The Search for a Lipid Trigger: The Effect of Salt Stress on the Lipid Profile of the Model Microalgal Species Hounslow E; Kapoore RV; Vaidyanathan S; Gilmour DJ; Wright PC Curr Biotechnol; 2016 Nov; 5(4):305-313. PubMed ID: 28409092 [TBL] [Abstract][Full Text] [Related]
2. Acclimation to NaCl and light stress of heterotrophic Chlamydomonas reinhardtii for lipid accumulation. Fan J; Zheng L J Biosci Bioeng; 2017 Sep; 124(3):302-308. PubMed ID: 28483385 [TBL] [Abstract][Full Text] [Related]
3. Growth and lipid content at low temperature of Arctic alga Chlamydomonas sp. KNM0029C. Kim EJ; Jung W; Lim S; Kim S; Han SJ; Choi HG Bioprocess Biosyst Eng; 2016 Jan; 39(1):151-7. PubMed ID: 26541584 [TBL] [Abstract][Full Text] [Related]
4. Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources. Hounslow E; Evans CA; Pandhal J; Sydney T; Couto N; Pham TK; Gilmour DJ; Wright PC Biotechnol Biofuels; 2021 May; 14(1):121. PubMed ID: 34022944 [TBL] [Abstract][Full Text] [Related]
5. Isolation, phenotypic characterization and genome wide analysis of a Shin SE; Koh HG; Kang NK; Suh WI; Jeong BR; Lee B; Chang YK Biotechnol Biofuels; 2017; 10():308. PubMed ID: 29296121 [TBL] [Abstract][Full Text] [Related]
6. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Pandit PR; Fulekar MH; Karuna MSL Environ Sci Pollut Res Int; 2017 May; 24(15):13437-13451. PubMed ID: 28386901 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production. Karpagam R; Preeti R; Ashokkumar B; Varalakshmi P Ecotoxicol Environ Saf; 2015 Nov; 121():253-7. PubMed ID: 25838071 [TBL] [Abstract][Full Text] [Related]
8. An efficient and scalable extraction and quantification method for algal derived biofuel. Lohman EJ; Gardner RD; Halverson L; Macur RE; Peyton BM; Gerlach R J Microbiol Methods; 2013 Sep; 94(3):235-44. PubMed ID: 23810969 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Lipid Production and Molecular Dynamics under Salinity Stress in Green Microalga Atikij T; Syaputri Y; Iwahashi H; Praneenararat T; Sirisattha S; Kageyama H; Waditee-Sirisattha R Mar Drugs; 2019 Aug; 17(8):. PubMed ID: 31434347 [TBL] [Abstract][Full Text] [Related]
10. Enhanced lipid productivity of Chlamydomonas reinhardtii with combination of NaCl and CaCl Hang LT; Mori K; Tanaka Y; Morikawa M; Toyama T Bioprocess Biosyst Eng; 2020 Jun; 43(6):971-980. PubMed ID: 32008095 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Lipid Production in Devadasu E; Subramanyam R Front Plant Sci; 2021; 12():615577. PubMed ID: 33927732 [TBL] [Abstract][Full Text] [Related]
12. Exploring the potency of integrating semi-batch operation into lipid yield performance of Chlamydomonas sp. Tai-03. Tan CH; Show PL; Ling TC; Nagarajan D; Lee DJ; Chen WH; Chang JS Bioresour Technol; 2019 Aug; 285():121331. PubMed ID: 30999192 [TBL] [Abstract][Full Text] [Related]
13. Induction of lipids and resultant FAME profiles of microalgae from coastal waters of Pearl River Delta. Daroch M; Shao C; Liu Y; Geng S; Cheng JJ Bioresour Technol; 2013 Oct; 146():192-199. PubMed ID: 23933027 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of monogalactosyldiacylglycerol synthesis by down-regulation of MGD1 leads to membrane lipid remodeling and enhanced triacylglycerol biosynthesis in Chlamydomonas reinhardtii. Lee JW; Lee MW; Jin CZ; Oh HM; Jin E; Lee HG Biotechnol Biofuels Bioprod; 2022 Aug; 15(1):88. PubMed ID: 36030272 [TBL] [Abstract][Full Text] [Related]
15. Molecular Identification and Comparative Evaluation of Tropical Marine Microalgae for Biodiesel Production. Sabu S; Bright Singh IS; Joseph V Mar Biotechnol (NY); 2017 Aug; 19(4):328-344. PubMed ID: 28623567 [TBL] [Abstract][Full Text] [Related]
16. Differences in Glycerolipid Response of Yang M; Xie X; Kong FT; Xie KP; Yu SH; Ma JY; Xue S; Gong Z Front Plant Sci; 2022; 13():860966. PubMed ID: 35599875 [TBL] [Abstract][Full Text] [Related]
17. The Effect of High-Intensity Ultraviolet Light to Elicit Microalgal Cell Lysis and Enhance Lipid Extraction. Sydney T; Marshall-Thompson JA; Kapoore RV; Vaidyanathan S; Pandhal J; Fairclough JPA Metabolites; 2018 Oct; 8(4):. PubMed ID: 30326577 [TBL] [Abstract][Full Text] [Related]
18. Salt induced oxidative stress alters physiological, biochemical and metabolomic responses of green microalga Fal S; Aasfar A; Rabie R; Smouni A; Arroussi HE Heliyon; 2022 Jan; 8(1):e08811. PubMed ID: 35118209 [TBL] [Abstract][Full Text] [Related]
19. Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel. El-Sheekh MM; Gheda SF; El-Sayed AEB; Abo Shady AM; El-Sheikh ME; Schagerl M Environ Sci Pollut Res Int; 2019 Jun; 26(18):18520-18532. PubMed ID: 31049862 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Li N; Zhang Y; Meng H; Li S; Wang S; Xiao Z; Chang P; Zhang X; Li Q; Guo L; Igarashi Y; Luo F Biotechnol Biofuels; 2019; 12():14. PubMed ID: 30651755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]