These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 2840946)

  • 1. Reconstitution of rhodopsin and the cGMP cascade in polymerized bilayer membranes.
    Tyminski PN; Latimer LH; O'Brien DF
    Biochemistry; 1988 Apr; 27(8):2696-705. PubMed ID: 2840946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equilibrium and dynamic bilayer structural properties of unsaturated acyl chain phosphatidylcholine-cholesterol-rhodopsin recombinant vesicles and rod outer segment disk membranes as determined from higher order analysis of fluorescence anisotropy decay.
    Straume M; Litman BJ
    Biochemistry; 1988 Oct; 27(20):7723-33. PubMed ID: 3207703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane stimulation of cGMP phosphodiesterase activation by transducin: comparison of phospholipid bilayers to rod outer segment membranes.
    Malinski JA; Wensel TG
    Biochemistry; 1992 Oct; 31(39):9502-12. PubMed ID: 1327116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light- and nucleotide-dependent binding of phosphodiesterase to rod disk membranes: correlation with light-scattering changes and vesicle aggregation.
    Caretta A; Stein PJ
    Biochemistry; 1986 May; 25(9):2335-41. PubMed ID: 3013302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments.
    Wilden U; Hall SW; Kühn H
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1174-8. PubMed ID: 3006038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rod outer segment phosphodiesterase binding and activation in reconstituted membranes.
    Tyminski PN; O'Brien DF
    Biochemistry; 1984 Aug; 23(17):3986-93. PubMed ID: 6091733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow of information in the light-triggered cyclic nucleotide cascade of vision.
    Fung BK; Hurley JB; Stryer L
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):152-6. PubMed ID: 6264430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and activation of rod outer segment phosphodiesterase and guanosine triphosphate binding protein by disc membranes: influence of reassociation method and divalent cations.
    Miller JL; Litman BJ; Dratz EA
    Biochim Biophys Acta; 1987 Mar; 898(1):81-9. PubMed ID: 3030422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodopsin-phospholipid reconstitution by dialysis removal of octyl glucoside.
    Jackson ML; Litman BJ
    Biochemistry; 1982 Oct; 21(22):5601-8. PubMed ID: 7171574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of action of monoclonal antibodies that block the light activation of the guanyl nucleotide-binding protein, transducin.
    Hamm HE; Deretic D; Hofmann KP; Schleicher A; Kohl B
    J Biol Chem; 1987 Aug; 262(22):10831-8. PubMed ID: 2440875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of G-protein-receptor interaction in amplified phosphodiesterase activation of retinal rods.
    Liebman PA; Sitaramayya A
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():215-25. PubMed ID: 6328918
    [No Abstract]   [Full Text] [Related]  

  • 12. Phosphorylation at sites near rhodopsin's carboxyl-terminus regulates light initiated cGMP hydrolysis.
    Miller JL; Dratz EA
    Vision Res; 1984; 24(11):1509-21. PubMed ID: 6099932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of the guanosinetriphosphatase activity of G-protein to termination of light-activated guanosine cyclic 3',5'-phosphate hydrolysis in retinal rod outer segments.
    Sitaramayya A; Casadevall C; Bennett N; Hakki SI
    Biochemistry; 1988 Jun; 27(13):4880-7. PubMed ID: 2844243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-lipid interactions at membrane surfaces: a deuterium and phosphorus nuclear magnetic resonance study of the interaction between bovine rhodopsin and the bilayer head groups of dimyristoylphosphatidylcholine.
    Ryba NJ; Dempsey CE; Watts A
    Biochemistry; 1986 Aug; 25(17):4818-25. PubMed ID: 3768315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin-egg phosphatidylcholine reconstitution by an octyl glucoside dilution procedure.
    Jackson ML; Litman BJ
    Biochim Biophys Acta; 1985 Jan; 812(2):369-76. PubMed ID: 3881128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can metarhodopsin I activate rod outer segment phosphodiesterase?
    Knowles A; Pepe IM
    Cell Biophys; 1988 Aug; 13(1):43-53. PubMed ID: 2456151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodopsin phosphorylation in developing normal and degenerative mouse retinas.
    Shuster TA; Farber DB
    Invest Ophthalmol Vis Sci; 1986 Feb; 27(2):264-8. PubMed ID: 3003003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodopsin-detergent micelles aggregate upon activation of cyclic guanosine monophosphate phosphodiesterase.
    Caretta A; Stein PJ; Tirindelli R
    Biochemistry; 1990 Mar; 29(11):2652-7. PubMed ID: 2161251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of fluoride on retinal rod outer segment cGMP phosphodiesterase and G-protein.
    Cook NJ; Nullans G; Virmaux N
    Biochem Biophys Res Commun; 1985 Aug; 131(1):146-51. PubMed ID: 2994645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photobleaching and cyclic GMP dependences of rhodopsin phosphorylation in rod outer segment.
    Gupta BD
    Indian J Biochem Biophys; 1989 Oct; 26(5):305-10. PubMed ID: 2560768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.