BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28409460)

  • 1. KillerRed as a Tool to Study the Cellular Responses to Peroxisome-Derived Oxidative Stress.
    Fransen M; Brees C
    Methods Mol Biol; 2017; 1595():165-179. PubMed ID: 28409460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells.
    Wang B; Van Veldhoven PP; Brees C; Rubio N; Nordgren M; Apanasets O; Kunze M; Baes M; Agostinis P; Fransen M
    Free Radic Biol Med; 2013 Dec; 65():882-894. PubMed ID: 23988789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Monitoring of Subcellular Redox Dynamics in Living Mammalian Cells Using RoGFP2-Based Probes.
    Lismont C; Walton PA; Fransen M
    Methods Mol Biol; 2017; 1595():151-164. PubMed ID: 28409459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease.
    Fransen M; Nordgren M; Wang B; Apanasets O
    Biochim Biophys Acta; 2012 Sep; 1822(9):1363-73. PubMed ID: 22178243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peroxisomal metabolism and oxidative stress.
    Nordgren M; Fransen M
    Biochimie; 2014 Mar; 98():56-62. PubMed ID: 23933092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deleterious effects of mitochondrial ROS generated by KillerRed photodynamic action in human cell lines and C. elegans.
    Shibuya T; Tsujimoto Y
    J Photochem Photobiol B; 2012 Dec; 117():1-12. PubMed ID: 23000754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk.
    Ivashchenko O; Van Veldhoven PP; Brees C; Ho YS; Terlecky SR; Fransen M
    Mol Biol Cell; 2011 May; 22(9):1440-51. PubMed ID: 21372177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrient Metabolism, Subcellular Redox State, and Oxidative Stress in Pancreatic Islets and β-Cells.
    Roma LP; Jonas JC
    J Mol Biol; 2020 Mar; 432(5):1461-1493. PubMed ID: 31634466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Peroxisome-Mitochondria Connection: How and Why?
    Fransen M; Lismont C; Walton P
    Int J Mol Sci; 2017 May; 18(6):. PubMed ID: 28538669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of peroxisomes as a source of reactive oxygen species (ROS) signaling molecules.
    Sandalio LM; Rodríguez-Serrano M; Romero-Puertas MC; del Río LA
    Subcell Biochem; 2013; 69():231-55. PubMed ID: 23821152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species and peroxisomes: struggling for balance.
    Bonekamp NA; Völkl A; Fahimi HD; Schrader M
    Biofactors; 2009; 35(4):346-55. PubMed ID: 19459143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease.
    Pascual-Ahuir A; Manzanares-Estreder S; Proft M
    Oxid Med Cell Longev; 2017; 2017():9860841. PubMed ID: 28811869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular Redox Signaling.
    Zhu L; Lu Y; Zhang J; Hu Q
    Adv Exp Med Biol; 2017; 967():385-398. PubMed ID: 29047101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetically encoded redox sensors.
    Chiu WK; Towheed A; Palladino MJ
    Methods Enzymol; 2014; 542():263-87. PubMed ID: 24862271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peroxisomes and Cellular Oxidant/Antioxidant Balance: Protein Redox Modifications and Impact on Inter-organelle Communication.
    Fransen M; Lismont C
    Subcell Biochem; 2018; 89():435-461. PubMed ID: 30378035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease.
    Lismont C; Revenco I; Fransen M
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31357514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.).
    Bartoli CG; Gómez F; Martínez DE; Guiamet JJ
    J Exp Bot; 2004 Aug; 55(403):1663-9. PubMed ID: 15258167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative state of the liver of rats with adjuvant-induced arthritis.
    Comar JF; Babeto de Sá-Nakanishi A; de Oliveira AL; Marques Nogueira Wendt M; Bersani Amado CA; Ishii Iwamoto EL; Peralta RM; Bracht A
    Free Radic Biol Med; 2013 May; 58():144-53. PubMed ID: 23246655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of redox signaling in mammalian cells enabled by controlled photogeneration of reactive oxygen species.
    Posen Y; Kalchenko V; Seger R; Brandis A; Scherz A; Salomon Y
    J Cell Sci; 2005 May; 118(Pt 9):1957-69. PubMed ID: 15840654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.