These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28409784)

  • 1. Frequency stabilized diode laser with variable linewidth at a wavelength of 404.7  nm.
    Rein B; Walther T
    Opt Lett; 2017 Apr; 42(8):1508-1511. PubMed ID: 28409784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A frequency stabilization technique for diode lasers based on frequency-shifted beams from an acousto-optic modulator.
    Gunawardena M; Hess PW; Strait J; Majumder PK
    Rev Sci Instrum; 2008 Oct; 79(10):103110. PubMed ID: 19044705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diode-laser frequency stabilization by two-frequency Doppler-broadened absorption spectroscopy.
    Peng JL; Ahn H
    Appl Opt; 2004 Nov; 43(31):5860-3. PubMed ID: 15540444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acousto-optic modulator based frequency stabilized diode laser system for atom trapping.
    McDowall PD; Andersen MF
    Rev Sci Instrum; 2009 May; 80(5):053101. PubMed ID: 19485486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier frequency modulation of an acousto-optic modulator for laser stabilization.
    Aldous M; Woods J; Dragomir A; Roy R; Himsworth M
    Opt Express; 2017 May; 25(11):12830-12838. PubMed ID: 28786635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor.
    Corwin KL; Lu ZT; Hand CF; Epstein RJ; Wieman CE
    Appl Opt; 1998 May; 37(15):3295-8. PubMed ID: 18273286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable and frequency-stabilized diode laser with a Doppler-free two-photon zeeman lock.
    Baluschev S; Friedman N; Khaykovich L; Carasso D; Johns B; Davidson N
    Appl Opt; 2000 Sep; 39(27):4970-4. PubMed ID: 18350093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of sub-Doppler DAVLL to laser frequency stabilization in atomic cesium.
    Su DQ; Meng TF; Ji ZH; Yuan JP; Zhao YT; Xiao LT; Jia ST
    Appl Opt; 2014 Oct; 53(30):7011-6. PubMed ID: 25402788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locking Multi-Laser Frequencies to a Precision Wavelength Meter: Application to Cold Atoms.
    Kim J; Kim K; Lee D; Shin Y; Kang S; Kim JR; Choi Y; An K; Lee M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A highly integrated single-mode 1064 nm laser with 8.5 kHz linewidth for dual-wavelength active optical clock.
    Shi T; Pan D; Chang P; Shang H; Chen J
    Rev Sci Instrum; 2018 Apr; 89(4):043102. PubMed ID: 29716323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp.
    Kim JI; Park CY; Yeom JY; Kim EB; Yoon TH
    Opt Lett; 2003 Feb; 28(4):245-7. PubMed ID: 12653360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency stabilization of a 1.3 microm laser diode using double resonance optical pumping in the 5P 3/2-6S 1/2 transition of Rb atoms.
    Moon HS
    Appl Opt; 2008 Mar; 47(8):1097-102. PubMed ID: 18327281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable narrow-linewidth laser at 2 μm wavelength for gravitational wave detector research.
    Kapasi DP; Eichholz J; McRae T; Ward RL; Slagmolen BJJ; Legge S; Hardman KS; Altin PA; McClelland DE
    Opt Express; 2020 Feb; 28(3):3280-3288. PubMed ID: 32122000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1 Hz linewidth Ti:sapphire laser as local oscillator for (40)Ca(+) optical clocks.
    Bian W; Huang Y; Guan H; Liu P; Ma L; Gao K
    Rev Sci Instrum; 2016 Jun; 87(6):063121. PubMed ID: 27370440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilizing a laser frequency by the Pound-Drever-Hall technique with an acousto-optic modulator.
    Zeng Y; Fu Z; Liu YY; He XD; Liu M; Xu P; Sun XH; Wang J
    Appl Opt; 2021 Feb; 60(5):1159-1163. PubMed ID: 33690545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency stabilization of a 369 nm diode laser by nonlinear spectroscopy of Ytterbium ions in a discharge.
    Lee MW; Jarratt MC; Marciniak C; Biercuk MJ
    Opt Express; 2014 Mar; 22(6):7210-21. PubMed ID: 24664069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of rubidium 5S1/2 --> 7S1/2 two-photon transitions with a diode laser.
    Ko MS; Liu YW
    Opt Lett; 2004 Aug; 29(15):1799-801. PubMed ID: 15352374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1/f noise in external-cavity InGaN diode laser at 420  nm wavelength for atomic spectroscopy.
    Zeng X; Boïko DL
    Opt Lett; 2014 Mar; 39(6):1685-8. PubMed ID: 24690869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate.
    Hakobyan S; Wittwer VJ; Brochard P; Gürel K; Schilt S; Mayer AS; Keller U; Südmeyer T
    Opt Express; 2017 Aug; 25(17):20437-20453. PubMed ID: 29041725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Faraday laser lasing on Rb 1529 nm transition.
    Chang P; Peng H; Zhang S; Chen Z; Luo B; Chen J; Guo H
    Sci Rep; 2017 Aug; 7(1):8995. PubMed ID: 28827670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.