BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 28409860)

  • 1. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design.
    Ge H; Chen X; Yang X
    Chemistry; 2017 Jul; 23(37):8850-8856. PubMed ID: 28409860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mechanistic study and computational prediction of iron, cobalt and manganese cyclopentadienone complexes for hydrogenation of carbon dioxide.
    Ge H; Chen X; Yang X
    Chem Commun (Camb); 2016 Oct; 52(84):12422-12425. PubMed ID: 27606377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired Design and Computational Prediction of Iron Complexes with Pendant Amines for the Production of Methanol from CO2 and H2.
    Chen X; Yang X
    J Phys Chem Lett; 2016 Mar; 7(6):1035-41. PubMed ID: 26937854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational prediction of pentadentate iron and cobalt complexes as a mimic of mono-iron hydrogenase for the hydrogenation of carbon dioxide to methanol.
    Wang W; Qiu B; Yang X
    Dalton Trans; 2019 Jun; 48(23):8034-8038. PubMed ID: 31074752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclopentadienone Diphosphine Ruthenium Complex: A Designed Catalyst for the Hydrogenation of Carbon Dioxide to Methanol.
    Tang Y; Pu M; Lei M
    J Org Chem; 2024 Feb; 89(4):2431-2439. PubMed ID: 38306607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogenation of CO
    Yan X; Ge H; Yang X
    Inorg Chem; 2019 May; 58(9):5494-5502. PubMed ID: 31025565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifunctional (cyclopentadienone)iron-tricarbonyl complexes: synthesis, computational studies and application in reductive amination.
    Moulin S; Dentel H; Pagnoux-Ozherelyeva A; Gaillard S; Poater A; Cavallo L; Lohier JF; Renaud JL
    Chemistry; 2013 Dec; 19(52):17881-90. PubMed ID: 24243783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenation of CO
    Zhang L; Pu M; Lei M
    Dalton Trans; 2021 Jun; 50(21):7348-7355. PubMed ID: 33960356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid.
    Ge H; Jing Y; Yang X
    Inorg Chem; 2016 Dec; 55(23):12179-12184. PubMed ID: 27934414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical study on the hydrogenation of CO
    Zhou Y; Zhao Y; Shi X; Tang Y; Yang Z; Pu M; Lei M
    Dalton Trans; 2022 Jul; 51(26):10020-10028. PubMed ID: 35703402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High chemoselectivity of an advanced iron catalyst for the hydrogenation of aldehydes with isolated C═C bond: a computational study.
    Lu X; Cheng R; Turner N; Liu Q; Zhang M; Sun X
    J Org Chem; 2014 Oct; 79(19):9355-64. PubMed ID: 25222376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydricity of an Fe-H Species and Catalytic CO2 Hydrogenation.
    Fong H; Peters JC
    Inorg Chem; 2015 Jun; 54(11):5124-35. PubMed ID: 25549663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism for the hydrogenation of ketones catalyzed by Knölker's iron-catalyst.
    Lu X; Zhang Y; Yun P; Zhang M; Li T
    Org Biomol Chem; 2013 Aug; 11(32):5264-77. PubMed ID: 23824054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Prediction of Chiral Iron Complexes for Asymmetric Transfer Hydrogenation of Pyruvic Acid to Lactic Acid.
    Wang W; Yang X
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32325984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zwitterionic Halido Cyclopentadienone Iron Complexes and Their Catalytic Performance in Hydrogenation Reactions.
    Bütikofer A; Chen P
    Inorg Chem; 2023 Mar; 62(10):4188-4196. PubMed ID: 36847480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study.
    Mondal B; Neese F; Ye S
    Inorg Chem; 2015 Aug; 54(15):7192-8. PubMed ID: 26204267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media.
    Badiei YM; Wang WH; Hull JF; Szalda DJ; Muckerman JT; Himeda Y; Fujita E
    Inorg Chem; 2013 Nov; 52(21):12576-86. PubMed ID: 24131038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms for dehydrogenation and hydrogenation of N-heterocycles using PNP-pincer-supported iron catalysts: a density functional study.
    Sawatlon B; Surawatanawong P
    Dalton Trans; 2016 Oct; 45(38):14965-78. PubMed ID: 27550424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron/Brønsted Acid Catalyzed Asymmetric Hydrogenation: Mechanism and Selectivity-Determining Interactions.
    Hopmann KH
    Chemistry; 2015 Jul; 21(28):10020-30. PubMed ID: 26039958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.