BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2841)

  • 21. The effects of carbon dioxide concentration on oxygen evolution and fluorescence transients in synchronous cultures of Chlorella pyrenoidosa.
    Slovacek RE; Bannister TT
    Biochim Biophys Acta; 1973 Apr; 292(3):729-40. PubMed ID: 4705451
    [No Abstract]   [Full Text] [Related]  

  • 22. Phosphate uptake in Chlorella pyrenoidosa : II. Effect of pH and of SH reagents.
    Jeanjean R
    Biochimie; 1975; 57(10):1229-36. PubMed ID: 4152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Regulation of glutamine metabolism in Chlorella pyrenoidosa. Mechanisms of regulating the activity of glutamine synthetase during ammonia assimilation].
    Akimova NI; Evstigneeva ZG; Kretovich VL
    Biokhimiia; 1976; 41(7):1306-12. PubMed ID: 11843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes of Ribulose Bisphosphate Carboxylase/Oxygenase Content, Ribulose Bisphosphate Concentration, and Photosynthetic Activity during Adaptation of High-CO(2) Grown Cells to Low-CO(2) Conditions in Chlorella pyrenoidosa.
    Yokota A; Canvin DT
    Plant Physiol; 1986 Feb; 80(2):341-5. PubMed ID: 16664623
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of paraquat on photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions.
    Zhang W; Liu M; Zhang P; Yu F; Lu S; Li P; Zhou J
    Arch Environ Contam Toxicol; 2014 Nov; 67(4):593-600. PubMed ID: 25038722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the mechanism of glycolate synthesis by Chromatium and Chlorella.
    Lorimer GH; Osmond CB; Akazawa T; Asami S
    Arch Biochem Biophys; 1978 Jan; 185(1):49-56. PubMed ID: 623491
    [No Abstract]   [Full Text] [Related]  

  • 27. Regulation of photosynthetic carbon assimilation.
    Walker DA; Robinson SP
    Basic Life Sci; 1978; 11():43-59. PubMed ID: 747610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria.
    Bowien B; Schlegel HG
    Annu Rev Microbiol; 1981; 35():405-52. PubMed ID: 6271040
    [No Abstract]   [Full Text] [Related]  

  • 29. Studying photoprotective processes in the green alga Chlorella pyrenoidosa using nonlinear laser fluorimetry.
    Fadeev VV; Gorbunov MY; Gostev TS
    J Biophotonics; 2012 Jul; 5(7):502-7. PubMed ID: 22308058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Dependence of the production of organic substances liberated by Chlorella pyrenoidosa cells on the photosynthesis process].
    Maksimova IV; Kuznetsova ACh
    Mikrobiologiia; 1973; 42(6):969-75. PubMed ID: 4782426
    [No Abstract]   [Full Text] [Related]  

  • 31. Effect of chitosan on the enantioselective bioavailability of the herbicide dichlorprop to Chlorella pyrenoidosa.
    Wen Y; Yuan Y; Chen H; Xu D; Lin K; Liu W
    Environ Sci Technol; 2010 Jul; 44(13):4981-7. PubMed ID: 20536147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A study of the control of glycolate excretion in chlorella.
    Colman B; Miller AG; Grodzinski B
    Plant Physiol; 1974 Mar; 53(3):395-7. PubMed ID: 16658712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of oxygen on the reduction of CO2 to glycolic acid and other products during photosynthesis by Chlorella.
    BASSHAM JA; KIRK M
    Biochem Biophys Res Commun; 1962 Nov; 9():376-80. PubMed ID: 13969890
    [No Abstract]   [Full Text] [Related]  

  • 34. Evidence for turnover of ribulose-1,5-diphosphate carboxylase and continuous transcription of its structural gene throughout the cell cycle of the eucaryote Chlorella.
    Sitz TO; Molloy GR; Schmidt RR
    Biochim Biophys Acta; 1973 Aug; 319(1):103-8. PubMed ID: 4733692
    [No Abstract]   [Full Text] [Related]  

  • 35. Inhibition of oxygen evolution following illumination of Chlorella cells with far-red light.
    Bennoun P; Bouges-Bocquet B
    Biochim Biophys Acta; 1975 Nov; 408(2):180-5. PubMed ID: 1191656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aggregate formation and polysaccharide content of Chlorella pyrenoidosa Chick (Chlorophyta) in response to simulated nutrient stress.
    Yang Z; Liu Y; Ge J; Wang W; Chen Y; Montagnes D
    Bioresour Technol; 2010 Nov; 101(21):8336-41. PubMed ID: 20580222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycolate Formation and Excretion by Chlorella pyrenoidosa and Netrium digitus.
    Krampitz LO; Yarris CE
    Plant Physiol; 1983 Aug; 72(4):1084-7. PubMed ID: 16663124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal extraction and hydrolysis of Chlorella pyrenoidosa proteins.
    Wang X; Zhang X
    Bioresour Technol; 2012 Dec; 126():307-13. PubMed ID: 23117187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of anaerobiosis on photosynthetic reactions and nitrogen metabolism of algae with and without hydrogenase.
    Kessler E
    Arch Mikrobiol; 1973 Oct; 93(2):91-100. PubMed ID: 4764234
    [No Abstract]   [Full Text] [Related]  

  • 40. Glycolate pathway in algae.
    Hess JL; Tolbert NE
    Plant Physiol; 1967 Mar; 42(3):371-9. PubMed ID: 6045296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.