These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 28410052)

  • 61. A Biologically Inspired Approach to Frequency Domain Feature Extraction for EEG Classification.
    Gursel Ozmen N; Gumusel L; Yang Y
    Comput Math Methods Med; 2018; 2018():9890132. PubMed ID: 29796060
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Motor Imagery EEG Classification Based on Decision Tree Framework and Riemannian Geometry.
    Guan S; Zhao K; Yang S
    Comput Intell Neurosci; 2019; 2019():5627156. PubMed ID: 30804988
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Separable Common Spatio-Spectral Patterns for Motor Imagery BCI Systems.
    Aghaei AS; Mahanta MS; Plataniotis KN
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):15-29. PubMed ID: 26452197
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Classification of electroencephalogram signals using wavelet-CSP and projection extreme learning machine.
    Dai Y; Zhang X; Chen Z; Xu X
    Rev Sci Instrum; 2018 Jul; 89(7):074302. PubMed ID: 30068128
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Classification of motor imagery using a time-localised approach.
    Rahman MKM; Haque T
    J Med Eng Technol; 2021 Jul; 45(5):361-374. PubMed ID: 33847221
    [TBL] [Abstract][Full Text] [Related]  

  • 66. EEG-Based BCI System Using Adaptive Features Extraction and Classification Procedures.
    Mondini V; Mangia AL; Cappello A
    Comput Intell Neurosci; 2016; 2016():4562601. PubMed ID: 27635129
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Quasi-probabilistic distribution model for EEG Signal classification by using 2-D signal representation.
    Murat Yilmaz C; Kose C; Hatipoglu B
    Comput Methods Programs Biomed; 2018 Aug; 162():187-196. PubMed ID: 29903485
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A novel heterogeneous transfer learning method based on data stitching for the sequential coding brain computer interface.
    Zhan Q; Wang L; Ren L; Huang X
    Comput Biol Med; 2022 Dec; 151(Pt A):106220. PubMed ID: 36332422
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
    Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S
    J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Current Source Density Estimation Enhances the Performance of Motor-Imagery-Related Brain-Computer Interface.
    Rathee D; Raza H; Prasad G; Cecotti H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2461-2471. PubMed ID: 28715332
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sparse Group Representation Model for Motor Imagery EEG Classification.
    Jiao Y; Zhang Y; Chen X; Yin E; Jin J; Wang X; Cichocki A
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):631-641. PubMed ID: 29994055
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Learning Temporal Information for Brain-Computer Interface Using Convolutional Neural Networks.
    Sakhavi S; Guan C; Yan S
    IEEE Trans Neural Netw Learn Syst; 2018 Nov; 29(11):5619-5629. PubMed ID: 29994075
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Motor imagery EEG discrimination using the correlation of wavelet features.
    Hsu WY
    Clin EEG Neurosci; 2015 Apr; 46(2):94-9. PubMed ID: 24599891
    [TBL] [Abstract][Full Text] [Related]  

  • 74. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.
    Müller-Putz GR; Schwarz A; Pereira J; Ofner P
    Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Quantifying mode mixing and leakage in multivariate empirical mode decomposition and application in motor imagery-based brain-computer interface system.
    Zheng Y; Xu G
    Med Biol Eng Comput; 2019 Jun; 57(6):1297-1311. PubMed ID: 30737625
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Maximum entropy based common spatial patterns for motor imagery classification.
    Ali SS; Lei Zhang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5865-5868. PubMed ID: 28269588
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Riemannian Geometry Approach to Reduced and Discriminative Covariance Estimation in Brain Computer Interfaces.
    Kalaganis FP; Laskaris NA; Chatzilari E; Nikolopoulos S; Kompatsiaris I
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):245-255. PubMed ID: 30998456
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Local temporal correlation common spatial patterns for single trial EEG classification during motor imagery.
    Zhang R; Xu P; Liu T; Zhang Y; Guo L; Li P; Yao D
    Comput Math Methods Med; 2013; 2013():591216. PubMed ID: 24348740
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Multiclass brain-computer interface classification by Riemannian geometry.
    Barachant A; Bonnet S; Congedo M; Jutten C
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):920-8. PubMed ID: 22010143
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A novel deep learning approach for classification of EEG motor imagery signals.
    Tabar YR; Halici U
    J Neural Eng; 2017 Feb; 14(1):016003. PubMed ID: 27900952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.