These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 28410052)

  • 81. Improved Transductive Support Vector Machine for a Small Labelled Set in Motor Imagery-Based Brain-Computer Interface.
    Xu Y; Hua J; Zhang H; Hu R; Huang X; Liu J; Guo F
    Comput Intell Neurosci; 2019; 2019():2087132. PubMed ID: 31885530
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Motor Imagery EEG Classification for Patients with Amyotrophic Lateral Sclerosis Using Fractal Dimension and Fisher's Criterion-Based Channel Selection.
    Liu YH; Huang S; Huang YD
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671629
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The backtracking search optimization algorithm for frequency band and time segment selection in motor imagery-based brain-computer interfaces.
    Wei Z; Wei Q
    J Integr Neurosci; 2016 Sep; 15(3):347-364. PubMed ID: 27681162
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds.
    Jiang D; Ma Y; Wang Y
    Comput Methods Programs Biomed; 2019 Sep; 178():19-30. PubMed ID: 31416548
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Using a motor imagery questionnaire to estimate the performance of a Brain-Computer Interface based on object oriented motor imagery.
    Vuckovic A; Osuagwu BA
    Clin Neurophysiol; 2013 Aug; 124(8):1586-95. PubMed ID: 23535455
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Portable brain-computer interface based on novel convolutional neural network.
    Zhang Y; Zhang X; Sun H; Fan Z; Zhong X
    Comput Biol Med; 2019 Apr; 107():248-256. PubMed ID: 30856388
    [TBL] [Abstract][Full Text] [Related]  

  • 87. An analysis of performance evaluation for motor-imagery based BCI.
    Thomas E; Dyson M; Clerc M
    J Neural Eng; 2013 Jun; 10(3):031001. PubMed ID: 23639955
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Is Riemannian Geometry Better than Euclidean in Averaging Covariance Matrices for CSP-based Subject-Independent Classification of Motor Imagery?
    Kainolda Y; Abibullaev B; Sameni R; Zollanvari A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():910-914. PubMed ID: 34891438
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Single trial classification of motor imagination using 6 dry EEG electrodes.
    Popescu F; Fazli S; Badower Y; Blankertz B; Müller KR
    PLoS One; 2007 Jul; 2(7):e637. PubMed ID: 17653264
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Fast L1-based sparse representation of EEG for motor imagery signal classification.
    Younghak Shin ; Heung-No Lee ; Balasingham I
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():223-226. PubMed ID: 28268317
    [TBL] [Abstract][Full Text] [Related]  

  • 91. EEG Classification with a Sequential Decision-Making Method in Motor Imagery BCI.
    Liu R; Wang Y; Newman GI; Thakor NV; Ying S
    Int J Neural Syst; 2017 Dec; 27(8):1750046. PubMed ID: 29046111
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface.
    Hänselmann S; Schneiders M; Weidner N; Rupp R
    J Neuroeng Rehabil; 2015 Aug; 12():71. PubMed ID: 26303933
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.
    Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A
    Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Bispectrum-based feature extraction technique for devising a practical brain-computer interface.
    Shahid S; Prasad G
    J Neural Eng; 2011 Apr; 8(2):025014. PubMed ID: 21436530
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Efficient resting-state EEG network facilitates motor imagery performance.
    Zhang R; Yao D; Valdés-Sosa PA; Li F; Li P; Zhang T; Ma T; Li Y; Xu P
    J Neural Eng; 2015 Dec; 12(6):066024. PubMed ID: 26529439
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Enhancing the performance of motor imagery EEG classification using phase features.
    Hsu WY
    Clin EEG Neurosci; 2015 Apr; 46(2):113-8. PubMed ID: 25404753
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification.
    Higashi H; Tanaka T
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):1100-10. PubMed ID: 22949044
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Riemannian Approaches in Brain-Computer Interfaces: A Review.
    Yger F; Berar M; Lotte F
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1753-1762. PubMed ID: 27845666
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification.
    Herman P; Prasad G; McGinnity TM; Coyle D
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):317-26. PubMed ID: 18701380
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Improving EEG-Based Motor Imagery Classification for Real-Time Applications Using the QSA Method.
    Batres-Mendoza P; Ibarra-Manzano MA; Guerra-Hernandez EI; Almanza-Ojeda DL; Montoro-Sanjose CR; Romero-Troncoso RJ; Rostro-Gonzalez H
    Comput Intell Neurosci; 2017; 2017():9817305. PubMed ID: 29348744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.