These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 28410095)
21. A wireless transmission neural interface system for unconstrained non-human primates. Fernandez-Leon JA; Parajuli A; Franklin R; Sorenson M; Felleman DJ; Hansen BJ; Hu M; Dragoi V J Neural Eng; 2015 Oct; 12(5):056005. PubMed ID: 26269496 [TBL] [Abstract][Full Text] [Related]
22. A Software-Defined Radio Receiver for Wireless Recording From Freely Behaving Animals. Jia Y; Lee B; Kong F; Zeng Z; Connolly M; Mahmoudi B; Ghovanloo M IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1645-1654. PubMed ID: 31647447 [TBL] [Abstract][Full Text] [Related]
23. Toward a High-Throughput Wireless Smart Arena for Behavioral Experiments on Small Animals. Mirbozorgi SA; Jia Y; Zhang P; Ghovanloo M IEEE Trans Biomed Eng; 2020 Aug; 67(8):2359-2369. PubMed ID: 31870973 [TBL] [Abstract][Full Text] [Related]
24. A Smart Cage With Uniform Wireless Power Distribution in 3D for Enabling Long-Term Experiments With Freely Moving Animals. Mirbozorgi SA; Bahrami H; Sawan M; Gosselin B IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):424-34. PubMed ID: 26011866 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of a closed loop inductive power transmission system on an awake behaving animal subject. Kiani M; Kwon KY; Zhang F; Oweiss K; Ghovanloo M Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7658-61. PubMed ID: 22256112 [TBL] [Abstract][Full Text] [Related]
26. An Implantable Peripheral Nerve Recording and Stimulation System for Experiments on Freely Moving Animal Subjects. Lee B; Koripalli MK; Jia Y; Acosta J; Sendi MSE; Choi Y; Ghovanloo M Sci Rep; 2018 Apr; 8(1):6115. PubMed ID: 29666407 [TBL] [Abstract][Full Text] [Related]
27. A portable wireless power transmission system for video capsule endoscopes. Shi Y; Yan G; Zhu B; Liu G Biomed Mater Eng; 2015; 26 Suppl 1():S1721-30. PubMed ID: 26405939 [TBL] [Abstract][Full Text] [Related]
28. Modeling and Characterization of Scaling Factor of Flexible Spiral Coils for Wirelessly Powered Wearable Sensors. Biswas DK; Sinclair M; Le T; Pullano SA; Fiorillo AS; Mahbub I Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316392 [TBL] [Abstract][Full Text] [Related]
29. Wirelessly Powered and Bi-Directional Data Communication System With Adaptive Conversion Chain for Multisite Biomedical Implants Over Single Inductive Link. Karimi MJ; Jin M; Zhou Y; Dehollain C; Schmid A IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):636-647. PubMed ID: 38285577 [TBL] [Abstract][Full Text] [Related]
30. Fully Integrated On-Chip Coil in 0.13 μm CMOS for Wireless Power Transfer Through Biological Media. Zargham M; Gulak PG IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):259-71. PubMed ID: 25099630 [TBL] [Abstract][Full Text] [Related]
31. A Frequency-Switching Inductive Power Transfer System for Wireless, Miniaturised and Large-Scale Neural Interfaces. Barbruni GL; Cordara C; Carminati M; Carrara S; Ghezzi D IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):679-690. PubMed ID: 38285578 [TBL] [Abstract][Full Text] [Related]
32. Geometrical Design of a Scalable Overlapping Planar Spiral Coil Array to Generate a Homogeneous Magnetic Field. Jow UM; Ghovanloo M IEEE Trans Magn; 2012 Dec; 49(6):2933-2945. PubMed ID: 24782576 [TBL] [Abstract][Full Text] [Related]
33. Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system. Abiri P; Abiri A; Packard RRS; Ding Y; Yousefi A; Ma J; Bersohn M; Nguyen KL; Markovic D; Moloudi S; Hsiai TK Sci Rep; 2017 Jul; 7(1):6180. PubMed ID: 28733677 [TBL] [Abstract][Full Text] [Related]
34. A Single-Chip Full-Duplex High Speed Transceiver for Multi-Site Stimulating and Recording Neural Implants. Mirbozorgi SA; Bahrami H; Sawan M; Rusch LA; Gosselin B IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):643-53. PubMed ID: 26469635 [TBL] [Abstract][Full Text] [Related]
35. Inductive coupling links for lowest misalignment effects in transcutaneous implanted devices. Abbas SM; Hannan MA; Samad SA; Hussain A Biomed Tech (Berl); 2014 Jun; 59(3):257-68. PubMed ID: 24445231 [TBL] [Abstract][Full Text] [Related]
36. A 13.56-mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission. Kiani M; Ghovanloo M IEEE Trans Biomed Circuits Syst; 2015 Feb; 9(1):1-11. PubMed ID: 24760945 [TBL] [Abstract][Full Text] [Related]
37. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators. Khan SR; Choi G Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527169 [TBL] [Abstract][Full Text] [Related]
38. Feasibility Study on Active Back Telemetry and Power Transmission Through an Inductive Link for Millimeter-Sized Biomedical Implants. Yeon P; Mirbozorgi SA; Lim J; Ghovanloo M IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1366-1376. PubMed ID: 29293426 [TBL] [Abstract][Full Text] [Related]
39. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats. Li YT; Wickens JR; Huang YL; Pan WH; Chen FY; Chen JJ J Neural Eng; 2013 Aug; 10(4):046007. PubMed ID: 23770892 [TBL] [Abstract][Full Text] [Related]
40. Seamless Capacitive Body Channel Wireless Power Transmission Toward Freely Moving Multiple Animals in an Animal Cage. Chang Y; Jang J; Cho J; Lee J; Son Y; Park S; Kim C IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):714-725. PubMed ID: 35976817 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]