BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28410221)

  • 1. Discovery and characterization of small molecule Rac1 inhibitors.
    Arnst JL; Hein AL; Taylor MA; Palermo NY; Contreras JI; Sonawane YA; Wahl AO; Ouellette MM; Natarajan A; Yan Y
    Oncotarget; 2017 May; 8(21):34586-34600. PubMed ID: 28410221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Cdc42 with the small molecule drug AZA197 suppresses primary colon cancer growth and prolongs survival in a preclinical mouse xenograft model by downregulation of PAK1 activity.
    Zins K; Gunawardhana S; Lucas T; Abraham D; Aharinejad S
    J Transl Med; 2013 Nov; 11():295. PubMed ID: 24279335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. R-Ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis.
    Guo Y; Kenney SR; Muller CY; Adams S; Rutledge T; Romero E; Murray-Krezan C; Prekeris R; Sklar LA; Hudson LG; Wandinger-Ness A
    Mol Cancer Ther; 2015 Oct; 14(10):2215-27. PubMed ID: 26206334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maspin controls mammary tumor cell migration through inhibiting Rac1 and Cdc42, but not the RhoA GTPase.
    Shi HY; Stafford LJ; Liu Z; Liu M; Zhang M
    Cell Motil Cytoskeleton; 2007 May; 64(5):338-46. PubMed ID: 17301947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Botulinum Toxin A Upregulates Rac1, Cdc42, and RhoA Gene Expression in a Dose-Dependent Manner: In Vivo and in Vitro Study.
    Park TH; Park JH; Chang CH; Rah DK
    J Craniofac Surg; 2016 Mar; 27(2):516-20. PubMed ID: 26963302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role for Gab1/SHP2 in thrombin activation of PAK1: gene transfer of kinase-dead PAK1 inhibits injury-induced restenosis.
    Wang D; Paria BC; Zhang Q; Karpurapu M; Li Q; Gerthoffer WT; Nakaoka Y; Rao GN
    Circ Res; 2009 May; 104(9):1066-75. PubMed ID: 19359598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway.
    Huang Q; Shen HM; Ong CN
    Cell Mol Life Sci; 2005 May; 62(10):1167-75. PubMed ID: 15928809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Rac1/Cdc42 GTPase-specific small molecule inhibitor suppresses growth of primary human prostate cancer xenografts and prolongs survival in mice.
    Zins K; Lucas T; Reichl P; Abraham D; Aharinejad S
    PLoS One; 2013; 8(9):e74924. PubMed ID: 24040362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases.
    Oprea TI; Sklar LA; Agola JO; Guo Y; Silberberg M; Roxby J; Vestling A; Romero E; Surviladze Z; Murray-Krezan C; Waller A; Ursu O; Hudson LG; Wandinger-Ness A
    PLoS One; 2015; 10(11):e0142182. PubMed ID: 26558612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential role of Rho GTPases in intestinal epithelial barrier regulation in vitro.
    Schlegel N; Meir M; Spindler V; Germer CT; Waschke J
    J Cell Physiol; 2011 May; 226(5):1196-203. PubMed ID: 20945370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of osteoclast apoptosis and motility by small GTPase binding protein Rac1.
    Fukuda A; Hikita A; Wakeyama H; Akiyama T; Oda H; Nakamura K; Tanaka S
    J Bone Miner Res; 2005 Dec; 20(12):2245-53. PubMed ID: 16294277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the Rho GTPase, Rac1, decreases estrogen receptor levels and is a novel therapeutic strategy in breast cancer.
    Rosenblatt AE; Garcia MI; Lyons L; Xie Y; Maiorino C; Désiré L; Slingerland J; Burnstein KL
    Endocr Relat Cancer; 2011 Apr; 18(2):207-19. PubMed ID: 21118977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of tumor cell growth, proliferation and migration by X-387, a novel active-site inhibitor of mTOR.
    Chen SM; Liu JL; Wang X; Liang C; Ding J; Meng LH
    Biochem Pharmacol; 2012 May; 83(9):1183-94. PubMed ID: 22305748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saponins extracted from by-product of Asparagus officinalis L. suppress tumour cell migration and invasion through targeting Rho GTPase signalling pathway.
    Wang J; Liu Y; Zhao J; Zhang W; Pang X
    J Sci Food Agric; 2013 Apr; 93(6):1492-8. PubMed ID: 23450726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of H-Ras, RhoA, Rac1 and Cdc42 responsive genes.
    Teramoto H; Malek RL; Behbahani B; Castellone MD; Lee NH; Gutkind JS
    Oncogene; 2003 May; 22(17):2689-97. PubMed ID: 12730683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The guanine nucleotide exchange factor Tiam1: a Janus-faced molecule in cellular signaling.
    Boissier P; Huynh-Do U
    Cell Signal; 2014 Mar; 26(3):483-91. PubMed ID: 24308970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leptin promotes motility and invasiveness in human colon cancer cells by activating multiple signal-transduction pathways.
    Jaffe T; Schwartz B
    Int J Cancer; 2008 Dec; 123(11):2543-56. PubMed ID: 18767036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rho guanosine 5'-triphosphatases differentially regulate insulin-like growth factor I (IGF-I) receptor-dependent and -independent actions of IGF-II on human trophoblast migration.
    Shields SK; Nicola C; Chakraborty C
    Endocrinology; 2007 Oct; 148(10):4906-17. PubMed ID: 17640993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RAC1 GTP-ase signals Wnt-beta-catenin pathway mediated integrin-directed metastasis-associated tumor cell phenotypes in triple negative breast cancers.
    De P; Carlson JH; Jepperson T; Willis S; Leyland-Jones B; Dey N
    Oncotarget; 2017 Jan; 8(2):3072-3103. PubMed ID: 27902969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetically upregulated GEFT-derived invasion and metastasis of rhabdomyosarcoma via epithelial mesenchymal transition promoted by the Rac1/Cdc42-PAK signalling pathway.
    Liu C; Zhang L; Cui W; Du J; Li Z; Pang Y; Liu Q; Shang H; Meng L; Li W; Song L; Wang P; Xie Y; Wang Y; Liu Y; Hu J; Zhang W; Li F
    EBioMedicine; 2019 Dec; 50():122-134. PubMed ID: 31761617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.