These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28410484)

  • 1. Microalgae screening under CO
    Hussain F; Shah SZ; Zhou W; Iqbal M
    J Photochem Photobiol B; 2017 May; 170():91-98. PubMed ID: 28410484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO
    Mousavi S; Najafpour GD; Mohammadi M
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30139-30150. PubMed ID: 30151786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.
    Cheah WY; Show PL; Chang JS; Ling TC; Juan JC
    Bioresour Technol; 2015 May; 184():190-201. PubMed ID: 25497054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological CO
    de Morais MG; de Morais EG; Duarte JH; Deamici KM; Mitchell BG; Costa JAV
    World J Microbiol Biotechnol; 2019 May; 35(5):78. PubMed ID: 31087167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification and improvement of microalgae strains for strengthening CO
    Cheng J; Zhu Y; Zhang Z; Yang W
    Bioresour Technol; 2019 Nov; 291():121850. PubMed ID: 31358426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.
    Huang G; Chen F; Kuang Y; He H; Qin A
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1220-38. PubMed ID: 26695777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of CO
    Almomani F; Al Ketife A; Judd S; Shurair M; Bhosale RR; Znad H; Tawalbeh M
    Sci Total Environ; 2019 Apr; 662():662-671. PubMed ID: 30703724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed microalgae consortia growth under higher concentration of CO
    Aslam A; Thomas-Hall SR; Manzoor M; Jabeen F; Iqbal M; Uz Zaman Q; Schenk PM; Asif Tahir M
    J Photochem Photobiol B; 2018 Feb; 179():126-133. PubMed ID: 29367147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.
    Yadav G; Karemore A; Dash SK; Sen R
    Bioresour Technol; 2015 Sep; 191():399-406. PubMed ID: 25921786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of the growth environment of microalgae with high biomass and lipid productivity.
    Huang YT; Lee HT; Lai CW
    J Nanosci Nanotechnol; 2013 Mar; 13(3):2117-21. PubMed ID: 23755654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalga, Acutodesmus obliquus KGE 30 as a potential candidate for CO2 mitigation and biodiesel production.
    Yun HS; Ji MK; Park YT; Salama el-S; Choi J
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):17831-9. PubMed ID: 27250092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal?
    Acién Fernández FG; González-López CV; Fernández Sevilla JM; Molina Grima E
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):577-86. PubMed ID: 22923096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Adaptability of oleaginous microalgae Chlorococcum alkaliphilus MC-1 cultivated with flue gas].
    Yang X; Xiang W; Zhang F; Wu H; He H; Fan J
    Sheng Wu Gong Cheng Xue Bao; 2013 Mar; 29(3):370-81. PubMed ID: 23789278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon dioxide (CO
    Kassim MA; Meng TK
    Sci Total Environ; 2017 Apr; 584-585():1121-1129. PubMed ID: 28169025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofixation of CO2 from synthetic combustion gas using cultivated microalgae in three-stage serial tubular photobioreactors.
    Morais MG; Radmann EM; Costa JA
    Z Naturforsch C J Biosci; 2011; 66(5-6):313-8. PubMed ID: 21812350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO
    Kong W; Kong J; Ma J; Lyu H; Feng S; Wang Z; Yuan P; Shen B
    J Environ Manage; 2021 Apr; 284():112070. PubMed ID: 33561760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Progress in biofixation of CO2 from combustion flue gas by microalgae].
    Zhang Y; Zhao B; Xiong K; Zhang Z; Hao X; Liu T
    Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):164-71. PubMed ID: 21650040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomass and lipid accumulation of three new screened microalgae with high concentration of carbon dioxide and nitric oxide.
    Zhang S; Pei H; Hu W; Qi F; Han L; Song M; Han F
    Environ Technol; 2015; 36(18):2278-84. PubMed ID: 25743853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a microalga, Scenedesmus obliquus PF3, for the biological removal of nitric oxide (NO) and carbon dioxide.
    Ma S; Li D; Yu Y; Li D; Yadav RS; Feng Y
    Environ Pollut; 2019 Sep; 252(Pt A):344-351. PubMed ID: 31158663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ biological CO
    Razzak SA
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):93-105. PubMed ID: 30259109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.