BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28410505)

  • 1. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.
    Karasawa K; Oda M; Kitasaka T; Misawa K; Fujiwara M; Chu C; Zheng G; Rueckert D; Mori K
    Med Image Anal; 2017 Jul; 39():18-28. PubMed ID: 28410505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated abdominal multi-organ segmentation with subject-specific atlas generation.
    Wolz R; Chu C; Misawa K; Fujiwara M; Mori K; Rueckert D
    IEEE Trans Med Imaging; 2013 Sep; 32(9):1723-30. PubMed ID: 23744670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-organ abdominal CT segmentation using hierarchically weighted subject-specific atlases.
    Wolz R; Chu C; Misawa K; Mori K; Rueckert D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):10-7. PubMed ID: 23285529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
    Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM;
    Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated pancreas segmentation from computed tomography and magnetic resonance images: A systematic review.
    Kumar H; DeSouza SV; Petrov MS
    Comput Methods Programs Biomed; 2019 Sep; 178():319-328. PubMed ID: 31416559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.
    Wang J; Cheng Y; Guo C; Wang Y; Tamura S
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):817-26. PubMed ID: 26646416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection.
    Zhuang X; Bai W; Song J; Zhan S; Qian X; Shi W; Lian Y; Rueckert D
    Med Phys; 2015 Jul; 42(7):3822-33. PubMed ID: 26133584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discriminative dictionary learning for abdominal multi-organ segmentation.
    Tong T; Wolz R; Wang Z; Gao Q; Misawa K; Fujiwara M; Mori K; Hajnal JV; Rueckert D
    Med Image Anal; 2015 Jul; 23(1):92-104. PubMed ID: 25988490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive Segmentation of Pancreases in Abdominal Computed Tomography Images and Its Evaluation Based on Segmentation Accuracy and Interaction Costs.
    Takizawa H; Suzuki T; Kudo H; Okada T
    Biomed Res Int; 2017; 2017():5094592. PubMed ID: 29082247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning.
    Xu Z; Burke RP; Lee CP; Baucom RB; Poulose BK; Abramson RG; Landman BA
    Med Image Anal; 2015 Aug; 24(1):18-27. PubMed ID: 26046403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel multi-atlas strategy with dense deformation field reconstruction for abdominal and thoracic multi-organ segmentation from computed tomography.
    Oliveira B; Queirós S; Morais P; Torres HR; Gomes-Fonseca J; Fonseca JC; Vilaça JL
    Med Image Anal; 2018 Apr; 45():108-120. PubMed ID: 29432979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and multi-level geometrical descriptor analysis in CT and MRI volumes for automatic pancreas segmentation.
    Asaturyan H; Gligorievski A; Villarini B
    Comput Med Imaging Graph; 2019 Jul; 75():1-13. PubMed ID: 31103856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pancreas Segmentation in Abdominal CT Scans using Inter-/Intra-Slice Contextual Information with a Cascade Neural Network.
    Yang Z; Zhang L; Zhang M; Feng J; Wu Z; Ren F; Lv Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5937-5940. PubMed ID: 31947200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.
    Li D; Liu L; Chen J; Li H; Yin Y; Ibragimov B; Xing L
    Phys Med Biol; 2017 Jan; 62(1):272-288. PubMed ID: 27991439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning.
    Arabi H; Koutsouvelis N; Rouzaud M; Miralbell R; Zaidi H
    Phys Med Biol; 2016 Sep; 61(17):6531-52. PubMed ID: 27524504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of liver and spleen based on computational anatomy models.
    Dong C; Chen YW; Foruzan AH; Lin L; Han XH; Tateyama T; Wu X; Xu G; Jiang H
    Comput Biol Med; 2015 Dec; 67():146-60. PubMed ID: 26551453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach.
    Qazi AA; Pekar V; Kim J; Xie J; Breen SL; Jaffray DA
    Med Phys; 2011 Nov; 38(11):6160-70. PubMed ID: 22047381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-paced DenseNet with boundary constraint for automated multi-organ segmentation on abdominal CT images.
    Tong N; Gou S; Niu T; Yang S; Sheng K
    Phys Med Biol; 2020 Jul; 65(13):135011. PubMed ID: 32657281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-modality multi-atlas segmentation of torso organs from [
    Wang H; Zhang N; Huo L; Zhang B
    Int J Comput Assist Radiol Surg; 2019 Mar; 14(3):473-482. PubMed ID: 30390179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
    Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM
    Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.