BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28410512)

  • 1. Hydronium jarosite activation of peroxymonosulfate for the oxidation of organic contaminant in an electrochemical reactor driven by microbial fuel cell.
    Yan S; Geng J; Guo R; Du Y; Zhang H
    J Hazard Mater; 2017 Jul; 333():358-368. PubMed ID: 28410512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants.
    Liu XW; Sun XF; Li DB; Li WW; Huang YX; Sheng GP; Yu HQ
    Water Res; 2012 Sep; 46(14):4371-8. PubMed ID: 22698252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical/Fe
    Sun Z; Li S; Ding H; Zhu Y; Wang X; Liu H; Zhang Q; Zhao C
    Chemosphere; 2020 Feb; 241():125125. PubMed ID: 31683418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of Acid Orange 7 using peroxymonosulfate catalyzed by granulated activated carbon and enhanced by electrolysis.
    Li J; Lin H; Zhu K; Zhang H
    Chemosphere; 2017 Dec; 188():139-147. PubMed ID: 28881241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel combination of bioelectrochemical system with peroxymonosulfate oxidation for enhanced azo dye degradation and MnFe
    Xu H; Quan X; Chen L
    Chemosphere; 2019 Feb; 217():800-807. PubMed ID: 30458415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process.
    Chen D; Ma X; Zhou J; Chen X; Qian G
    J Hazard Mater; 2014 Aug; 279():476-84. PubMed ID: 25103453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of UVC-LEDs and ultrasound for peroxymonosulfate activation to degrade synthetic dye: influence of promotional and inhibitory agents and application for real wastewater.
    Ahmadi M; Ghanbari F
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):6003-6014. PubMed ID: 29238925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants.
    Qi C; Liu X; Ma J; Lin C; Li X; Zhang H
    Chemosphere; 2016 May; 151():280-8. PubMed ID: 26946115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significantly enhanced base activation of peroxymonosulfate by polyphosphates: Kinetics and mechanism.
    Lou X; Fang C; Geng Z; Jin Y; Xiao D; Wang Z; Liu J; Guo Y
    Chemosphere; 2017 Apr; 173():529-534. PubMed ID: 28142111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt.
    Anipsitakis GP; Dionysiou DD
    Environ Sci Technol; 2003 Oct; 37(20):4790-7. PubMed ID: 14594393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenite oxidation and removal driven by a bio-electro-Fenton process under neutral pH conditions.
    Wang XQ; Liu CP; Yuan Y; Li FB
    J Hazard Mater; 2014 Jun; 275():200-9. PubMed ID: 24857903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on the degradation of AO7 by UV/K2S2O8, system: kinetics and pathways].
    Chen XY; Wang WP; Zhu FX; Hong CL; Xue ZY
    Huan Jing Ke Xue; 2010 Jul; 31(7):1533-7. PubMed ID: 20825022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the kinetics of organic pollutant degradation with Co
    Huang Y; Yang F; Ai L; Feng M; Wang C; Wang Z; Liu J
    Chemosphere; 2017 Jul; 179():331-336. PubMed ID: 28376396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Acid Orange 7 from water by electrochemically generated Fenton's reagent.
    Ozcan A; Oturan MA; Oturan N; Sahin Y
    J Hazard Mater; 2009 Apr; 163(2-3):1213-20. PubMed ID: 18804327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient CuO-γFe2O3 composite activates persulfate for organic pollutants removal: Performance, advantages and mechanism.
    Xian G; Niu L; Zhang G; Zhou N; Long Z; Zhi R
    Chemosphere; 2020 Mar; 242():125191. PubMed ID: 31675588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient removal of acid orange 7 using a porous adsorbent-supported zero-valent iron as a synergistic catalyst in advanced oxidation process.
    Du Y; Dai M; Cao J; Peng C; Ali I; Naz I; Li J
    Chemosphere; 2020 Apr; 244():125522. PubMed ID: 31830643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-empirical chemical model for indirect advanced oxidation of Acid Orange 7 using an unmodified carbon fabric cathode for H2O2 production in an electrochemical reactor.
    Ramírez B; Rondán V; Ortiz-Hernández L; Silva-Martínez S; Alvarez-Gallegos A
    J Environ Manage; 2016 Apr; 171():29-34. PubMed ID: 26874037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient peroxymonosulfate activation by Zn/Fe metal-organic framework-derived ZnO/Fe
    Zhang X; Zhang J; Huang X; Wu QP; Yan CH; Lu JF
    Water Environ Res; 2019 Jul; 91(7):634-641. PubMed ID: 30793819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-magnetization for enhancing the iron-catalyzed activation of peroxymonosulfate via accelerating the corrosion of Fe
    Liu Y; Zhou P; Huo X; Liu Y; Cheng X; Zhang Y
    Water Sci Technol; 2019 Apr; 79(7):1287-1296. PubMed ID: 31123228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation.
    Yong XY; Gu DY; Wu YD; Yan ZY; Zhou J; Wu XY; Wei P; Jia HH; Zheng T; Yong YC
    J Hazard Mater; 2017 Feb; 324(Pt B):178-183. PubMed ID: 28340989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.