These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 28410553)
41. A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature. Tyagi H; Kushwaha A; Kumar A; Aslam M Nanoscale Res Lett; 2016 Dec; 11(1):362. PubMed ID: 27526178 [TBL] [Abstract][Full Text] [Related]
42. Interactions between water-soluble CdSe quantum dots and gold nanoparticles studied by UV-visible absorption spectroscopy. Han H; Cai Y; Liang J; Sheng Z Anal Sci; 2007 Jun; 23(6):651-4. PubMed ID: 17575346 [TBL] [Abstract][Full Text] [Related]
43. Electronic Properties of Optically Switchable Photochromic Diarylethene Molecules at the Interface with Organic Semiconductors. Wang Q; Frisch J; Herder M; Hecht S; Koch N Chemphyschem; 2017 Apr; 18(7):722-727. PubMed ID: 28171683 [TBL] [Abstract][Full Text] [Related]
44. Surface chemistry of gold nanoparticles determines interactions with bovine serum albumin. Wang G; Yan C; Gao S; Liu Y Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109856. PubMed ID: 31349396 [TBL] [Abstract][Full Text] [Related]
45. New photoswitching unit for magnetic interaction: diarylethene with 2,5-bis(arylethynyl)-3-thienyl group. Tanifuji N; Irie M; Matsuda K J Am Chem Soc; 2005 Sep; 127(38):13344-53. PubMed ID: 16173768 [TBL] [Abstract][Full Text] [Related]
46. Amino acid induced fractal aggregation of gold nanoparticles: Why and how. Doyen M; Goole J; Bartik K; Bruylants G J Colloid Interface Sci; 2016 Feb; 464():160-6. PubMed ID: 26613335 [TBL] [Abstract][Full Text] [Related]
47. Poly(acrylic acid)-stabilized colloidal gold nanoparticles: synthesis and properties. Jans H; Jans K; Lagae L; Borghs G; Maes G; Huo Q Nanotechnology; 2010 Nov; 21(45):455702. PubMed ID: 20947937 [TBL] [Abstract][Full Text] [Related]
48. Study on photochromism of diarylethenes with a 2,5-dihydropyrrole bridging unit: a convenient preparation of 3,4-diarylpyrroles from 3,4-diaryl-2,5-dihydropyrroles. Chen Y; Zeng DX; Xie N; Dang YZ J Org Chem; 2005 Jun; 70(13):5001-5. PubMed ID: 15960498 [TBL] [Abstract][Full Text] [Related]
49. Differences in DNA Probe-Mediated Aggregation Behavior of Gold Nanomaterials Based on Their Geometric Appearance. Shin SW; Ahn SY; Yoon S; Wee HS; Bae JW; Lee JH; Lee WB; Um SH Langmuir; 2018 Dec; 34(49):14869-14874. PubMed ID: 30146890 [TBL] [Abstract][Full Text] [Related]
50. Synthesis and photochromic properties of oxime derivatives of 2,3-diarylcyclopent-2-en-1-ones. Shirinian VZ; Lonshakov DV; Lvov AG; Shimkin AA; Krayushkin MM Photochem Photobiol Sci; 2013 Sep; 12(9):1717-25. PubMed ID: 23804234 [TBL] [Abstract][Full Text] [Related]
51. The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy. Armendariz V; Parsons JG; Lopez ML; Peralta-Videa JR; Jose-Yacaman M; Gardea-Torresdey JL Nanotechnology; 2009 Mar; 20(10):105607. PubMed ID: 19417527 [TBL] [Abstract][Full Text] [Related]
52. Photochromic organic nanoparticles as innovative platforms for plasmonic nanoassemblies. Snell KE; Mevellec JY; Humbert B; Lagugné-Labarthet F; Ishow E ACS Appl Mater Interfaces; 2015 Jan; 7(3):1932-42. PubMed ID: 25561442 [TBL] [Abstract][Full Text] [Related]
53. Size Selective Green Synthesis of Silver and Gold Nanoparticles: Enhanced Antibacterial Efficacy of Resveratrol Capped Silver Sol. Shukla SP; Roy M; Mukherjee P; Das L; Neogy S; Srivastava D; Adhikari S J Nanosci Nanotechnol; 2016 Mar; 16(3):2453-63. PubMed ID: 27455655 [TBL] [Abstract][Full Text] [Related]
54. Self-assembly of photochromic diarylethenes with amphiphilic side chains: reversible thermal and photochemical control. Hirose T; Matsuda K; Irie M J Org Chem; 2006 Sep; 71(20):7499-508. PubMed ID: 16995652 [TBL] [Abstract][Full Text] [Related]
55. Photocontrollable J-aggregation of a diarylethene-phthalocyanine hybrid and its aggregation-stabilized photochromic behavior. Yi J; Chen Z; Xiang J; Zhang F Langmuir; 2011 Jul; 27(13):8061-6. PubMed ID: 21667954 [TBL] [Abstract][Full Text] [Related]
56. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Diegoli S; Manciulea AL; Begum S; Jones IP; Lead JR; Preece JA Sci Total Environ; 2008 Aug; 402(1):51-61. PubMed ID: 18534664 [TBL] [Abstract][Full Text] [Related]
57. Electronic and vibrational spectra of novel Lanreotide peptide capped gold nanoparticles. Molina-Trinidad EM; Estévez-Hernández O; Rendón L; Garibay-Febles V; Reguera E Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):283-9. PubMed ID: 21820948 [TBL] [Abstract][Full Text] [Related]
58. Augmentation of PCR efficiency using highly thermostable gold nanoparticles synthesized from a thermophilic bacterium, Geobacillus stearothermophilus. Girilal M; Mohammed Fayaz A; Mohan Balaji P; Kalaichelvan PT Colloids Surf B Biointerfaces; 2013 Jun; 106():165-9. PubMed ID: 23434707 [TBL] [Abstract][Full Text] [Related]
59. Architecture of linear arrays of fluorinated co-oligomeric nanocomposite-encapsulated gold nanoparticles: a new approach to the development of gold nanoparticles possessing an extremely red-shifted absorption characteristic. Mugisawa M; Sawada H Langmuir; 2008 Sep; 24(17):9215-8. PubMed ID: 18680320 [TBL] [Abstract][Full Text] [Related]
60. Photoswitching of intramolecular magnetic interaction using diarylethene with oligothiophene pi-conjugated chain. Matsuda K; Matsuo M; Irie M J Org Chem; 2001 Dec; 66(26):8799-803. PubMed ID: 11749609 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]