BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28410594)

  • 1. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.
    d'Elia N; Vanetti F; Cempini M; Pasquini G; Parri A; Rabuffetti M; Ferrarin M; Molino Lova R; Vitiello N
    J Neuroeng Rehabil; 2017 Apr; 14(1):29. PubMed ID: 28410594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study.
    Sanz-Morère CB; Martini E; Meoni B; Arnetoli G; Giffone A; Doronzio S; Fanciullacci C; Parri A; Conti R; Giovacchini F; Friðriksson Þ; Romo D; Crea S; Molino-Lova R; Vitiello N
    J Neuroeng Rehabil; 2021 Jul; 18(1):111. PubMed ID: 34217307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the effectiveness of an active strap for wearable robot: A Mechanical and Physiological Study.
    Lee S; In H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38083124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking with robot assistance: the influence of body weight support on the trunk and pelvis kinematics.
    Swinnen E; Baeyens JP; Knaepen K; Michielsen M; Hens G; Clijsen R; Goossens M; Buyl R; Meeusen R; Kerckhofs E
    Disabil Rehabil Assist Technol; 2015 May; 10(3):252-7. PubMed ID: 24512196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. External sensory-motor cues while managing unexpected slippages can violate the planar covariation law.
    Aprigliano F; Monaco V; Micera S
    J Biomech; 2019 Mar; 85():193-197. PubMed ID: 30655080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The FreeD module for the Lokomat facilitates a physiological movement pattern in healthy people - a proof of concept study.
    Aurich-Schuler T; Gut A; Labruyère R
    J Neuroeng Rehabil; 2019 Feb; 16(1):26. PubMed ID: 30728040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals.
    Dionisio VC; Brown DA
    J Neuroeng Rehabil; 2016 Jun; 13(1):57. PubMed ID: 27306027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of timing of hip extension assistance during loaded walking with a soft exosuit.
    Ding Y; Panizzolo FA; Siviy C; Malcolm P; Galiana I; Holt KG; Walsh CJ
    J Neuroeng Rehabil; 2016 Oct; 13(1):87. PubMed ID: 27716439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Body weight support during robot-assisted walking: influence on the trunk and pelvis kinematics.
    Swinnen E; Baeyens JP; Hens G; Knaepen K; Beckwée D; Michielsen M; Clijsen R; Kerckhofs E
    NeuroRehabilitation; 2015; 36(1):81-91. PubMed ID: 25547772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pneumatically-actuated lower-limb orthosis.
    Wu SK; Jordan M; Shen X
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8126-9. PubMed ID: 22256228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial.
    Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S
    J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical analysis of an unpowered hip flexion orthosis on individuals with and without multiple sclerosis.
    Neuman RM; Shearin SM; McCain KJ; Fey NP
    J Neuroeng Rehabil; 2021 Jun; 18(1):104. PubMed ID: 34176484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals.
    Farris RJ; Quintero HA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):652-9. PubMed ID: 21968791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gastrocnemius myoelectric control of a robotic hip exoskeleton.
    Grazi L; Crea S; Parri A; Yan T; Cortese M; Giovacchini F; Cempini M; Pasquini G; Micera S; Vitiello N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3881-4. PubMed ID: 26737141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscular activity when walking in a non-anthropomorphic wearable robot.
    Tagliamonte NL; Accoto D; Sergi F; Sudano A; Formica D; Guglielmelli E
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3073-6. PubMed ID: 25570640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Randomized controlled trial of robot-assisted gait training with dorsiflexion assistance on chronic stroke patients wearing ankle-foot-orthosis.
    Yeung LF; Ockenfeld C; Pang MK; Wai HW; Soo OY; Li SW; Tong KY
    J Neuroeng Rehabil; 2018 Jun; 15(1):51. PubMed ID: 29914523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wearable robotic orthosis with a spring-assist actuator.
    Seungmin Jung ; Chankyu Kim ; Jisu Park ; Dongyoub Yu ; Jaehwan Park ; Junho Choi
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5051-5054. PubMed ID: 28269403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation-Based Design for Wearable Robotic Systems: An Optimization Framework for Enhancing a Standing Long Jump.
    Ong CF; Hicks JL; Delp SL
    IEEE Trans Biomed Eng; 2016 May; 63(5):894-903. PubMed ID: 26258930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.