These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 28410596)
1. Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo. Woodward NC; Levine MC; Haghani A; Shirmohammadi F; Saffari A; Sioutas C; Morgan TE; Finch CE J Neuroinflammation; 2017 Apr; 14(1):84. PubMed ID: 28410596 [TBL] [Abstract][Full Text] [Related]
2. Urban traffic-derived nanoparticulate matter reduces neurite outgrowth via TNFα in vitro. Cheng H; Davis DA; Hasheminassab S; Sioutas C; Morgan TE; Finch CE J Neuroinflammation; 2016 Jan; 13():19. PubMed ID: 26810976 [TBL] [Abstract][Full Text] [Related]
3. Urban Air Pollution Nanoparticles from Los Angeles: Recently Decreased Neurotoxicity. Zhang H; D'Agostino C; Forman HJ; Cacciottolo M; Thorwald M; Mack WJ; Liu Q; Shkirkova K; Lamorie-Foote K; Sioutas C; Pirhadi M; Mack WJ; Morgan TE; Finch CE J Alzheimers Dis; 2021; 82(1):307-316. PubMed ID: 33967042 [TBL] [Abstract][Full Text] [Related]
4. Propofol Inhibits Lipopolysaccharide-Induced Inflammatory Responses in Spinal Astrocytes via the Toll-Like Receptor 4/MyD88-Dependent Nuclear Factor-κB, Extracellular Signal-Regulated Protein Kinases1/2, and p38 Mitogen-Activated Protein Kinase Pathways. Zhou CH; Zhu YZ; Zhao PP; Xu CM; Zhang MX; Huang H; Li J; Liu L; Wu YQ Anesth Analg; 2015 Jun; 120(6):1361-8. PubMed ID: 25695672 [TBL] [Abstract][Full Text] [Related]
5. Glutamatergic neurons in rodent models respond to nanoscale particulate urban air pollutants in vivo and in vitro. Morgan TE; Davis DA; Iwata N; Tanner JA; Snyder D; Ning Z; Kam W; Hsu YT; Winkler JW; Chen JC; Petasis NA; Baudry M; Sioutas C; Finch CE Environ Health Perspect; 2011 Jul; 119(7):1003-9. PubMed ID: 21724521 [TBL] [Abstract][Full Text] [Related]
6. Traffic-related air pollution impact on mouse brain accelerates myelin and neuritic aging changes with specificity for CA1 neurons. Woodward NC; Pakbin P; Saffari A; Shirmohammadi F; Haghani A; Sioutas C; Cacciottolo M; Morgan TE; Finch CE Neurobiol Aging; 2017 May; 53():48-58. PubMed ID: 28212893 [TBL] [Abstract][Full Text] [Related]
7. Air Pollution Particulate Matter Exposure and Chronic Cerebral Hypoperfusion and Measures of White Matter Injury in a Murine Model. Liu Q; Shkirkova K; Lamorie-Foote K; Connor M; Patel A; Babadjouni R; Huuskonen M; Montagne A; Baertsch H; Zhang H; Chen JC; Mack WJ; Walcott BP; Zlokovic BV; Sioutas C; Morgan TE; Finch CE; Mack WJ Environ Health Perspect; 2021 Aug; 129(8):87006. PubMed ID: 34424052 [TBL] [Abstract][Full Text] [Related]
8. Cell-based assays that predict in vivo neurotoxicity of urban ambient nano-sized particulate matter. Zhang H; Haghani A; Mousavi AH; Cacciottolo M; D'Agostino C; Safi N; Sowlat MH; Sioutas C; Morgan TE; Finch CE; Forman HJ Free Radic Biol Med; 2019 Dec; 145():33-41. PubMed ID: 31542466 [TBL] [Abstract][Full Text] [Related]
9. MicroRNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting Toll-like receptor 4. Zhang L; Li YJ; Wu XY; Hong Z; Wei WS J Neurochem; 2015 Mar; 132(6):713-23. PubMed ID: 25545945 [TBL] [Abstract][Full Text] [Related]
10. Increased A20-E3 ubiquitin ligase interactions in bid-deficient glia attenuate TLR3- and TLR4-induced inflammation. Kinsella S; Fichtner M; Watters O; König HG; Prehn JHM J Neuroinflammation; 2018 May; 15(1):130. PubMed ID: 29720226 [TBL] [Abstract][Full Text] [Related]
11. Nanoparticulate matter exposure results in white matter damage and an inflammatory microglial response in an experimental murine model. Connor M; Lamorie-Foote K; Liu Q; Shkirkova K; Baertsch H; Sioutas C; Morgan TE; Finch CE; Mack WJ PLoS One; 2021; 16(7):e0253766. PubMed ID: 34214084 [TBL] [Abstract][Full Text] [Related]
12. β-arrestin 2 attenuates lipopolysaccharide-induced liver injury Jiang MP; Xu C; Guo YW; Luo QJ; Li L; Liu HL; Jiang J; Chen HX; Wei XQ World J Gastroenterol; 2018 Jan; 24(2):216-225. PubMed ID: 29375207 [TBL] [Abstract][Full Text] [Related]
13. Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats. Zhou J; Deng Y; Li F; Yin C; Shi J; Gong Q Biomed Pharmacother; 2019 Mar; 111():315-324. PubMed ID: 30590319 [TBL] [Abstract][Full Text] [Related]
14. Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinson's disease and cell culture via inactivating TLR4/NF-κB pathway. Zhang FX; Xu RS Biomed Pharmacother; 2018 Jan; 97():1011-1019. PubMed ID: 29136779 [TBL] [Abstract][Full Text] [Related]
15. Daidzein attenuates lipopolysaccharide-induced acute lung injury via toll-like receptor 4/NF-kappaB pathway. Feng G; Sun B; Li TZ Int Immunopharmacol; 2015 Jun; 26(2):392-400. PubMed ID: 25887269 [TBL] [Abstract][Full Text] [Related]
16. Electroacupuncture modulated the inflammatory reaction in MCAO rats via inhibiting the TLR4/NF-κB signaling pathway in microglia. Han B; Lu Y; Zhao H; Wang Y; Li L; Wang T Int J Clin Exp Pathol; 2015; 8(9):11199-205. PubMed ID: 26617842 [TBL] [Abstract][Full Text] [Related]
17. Gangliosides trigger inflammatory responses via TLR4 in brain glia. Jou I; Lee JH; Park SY; Yoon HJ; Joe EH; Park EJ Am J Pathol; 2006 May; 168(5):1619-30. PubMed ID: 16651628 [TBL] [Abstract][Full Text] [Related]
18. Toll-Like Receptor 4 (TLR4) expression and stimulation in a model of intervertebral disc inflammation and degeneration. Rajan NE; Bloom O; Maidhof R; Stetson N; Sherry B; Levine M; Chahine NO Spine (Phila Pa 1976); 2013 Jul; 38(16):1343-51. PubMed ID: 22850250 [TBL] [Abstract][Full Text] [Related]
19. Prophylactic lithium alleviates splenectomy-induced cognitive dysfunction possibly by inhibiting hippocampal TLR4 activation in aged rats. Lu SM; Gui B; Dong HQ; Zhang X; Zhang SS; Hu LQ; Liu HL; Sun J; Qian YN Brain Res Bull; 2015 May; 114():31-41. PubMed ID: 25839444 [TBL] [Abstract][Full Text] [Related]
20. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Gorina R; Font-Nieves M; Márquez-Kisinousky L; Santalucia T; Planas AM Glia; 2011 Feb; 59(2):242-55. PubMed ID: 21125645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]