These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28410772)

  • 1. Recovery of quantum efficiency in spin-polarized photocathodes by atomic hydrogen cleaning.
    Jin X; Suzuki M; Yasue T; Koshikawa T; Takeda Y
    Ultramicroscopy; 2017 Dec; 183():89-93. PubMed ID: 28410772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Surface Cleaning on Quantum Efficiency, Lifetime and Surface Morphology of p-GaN:Cs Photocathodes.
    Schaber J; Xiang R; Teichert J; Arnold A; Murcek P; Zwartek P; Ryzhov A; Ma S; Gatzmaga S; Michel P; Gaponik N
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of degradation and recaesiation between GaAs and AlGaAs photocathodes in an unbaked vacuum system.
    Feng C; Zhang Y; Shi F; Qian Y; Cheng H; Zhang J; Liu X; Zhang X
    Appl Opt; 2017 Mar; 56(9):2568-2573. PubMed ID: 28375369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on quantum efficiency for reflection-mode InGaAs photocathodes with thin emission layer.
    Jin M; Chen X; Hao G; Chang B; Cheng H
    Appl Opt; 2015 Oct; 54(28):8332-8. PubMed ID: 26479605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved quantum efficiency and stability of GaAs photocathode using favorable illumination during activation.
    Feng C; Zhang Y; Qian Y; Liu J; Zhang J; Shi F; Bai X; Zou J
    Ultramicroscopy; 2019 Jul; 202():128-132. PubMed ID: 31028974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of exponential doping structure on the performance of GaAs photocathodes.
    Niu J; Zhang Y; Chang B; Yang Z; Xiong Y
    Appl Opt; 2009 Oct; 48(29):5445-50. PubMed ID: 19823224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene Intermediate Layer for Robust and Spectrum-Extended Cu Photocathode Activated with Cs and O.
    Tang S; Zhang Y; Jiang Y; Tong Z; Li S; Zhang J; Qian Y; Jiao G; Shi F; Hao G
    ACS Appl Mater Interfaces; 2024 Aug; 16(34):45347-45355. PubMed ID: 39141776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of negative electron affinity Ga0.37Al0.63As photocathodes in an ultrahigh vacuum system.
    Chen X; Hao G; Chang B; Zhang Y; Zhao J; Xu Y; Jin M
    Appl Opt; 2013 Sep; 52(25):6272-7. PubMed ID: 24085087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picosecond electron bunches from GaAs/GaAsP strained superlattice photocathode.
    Jin X; Matsuba S; Honda Y; Miyajima T; Yamamoto M; Utiyama T; Takeda Y
    Ultramicroscopy; 2013 Jul; 130():44-8. PubMed ID: 23711697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ characterization of thermal cleaned surface for preparing superior transmission-mode GaAs photocathodes.
    Fang C; Zhang Y; Zhang K; Shi F; Jiao G; Cheng H; Dai Q; Zhang J
    Appl Opt; 2019 Jul; 58(19):5281-5287. PubMed ID: 31503626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of Al(x)Ga(1-x)As/GaAs photocathodes with different aluminum concentrations by surface photovoltage spectroscopy.
    Jiao G; Hu C; Liu J; Qian Y
    Appl Opt; 2015 Oct; 54(28):8473-8. PubMed ID: 26479625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved preparation techniques for preparing high-performance GaAs photocathodes.
    Liu J; Guo Y; Feng C; Zhang J; Wang Z; Qian Y
    Appl Opt; 2020 Sep; 59(27):8147-8151. PubMed ID: 32976394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of photoemission performance of a GaAs photocathode between white light and monochromatic light illumination during activation.
    Feng C; Liu J; Zhang Y; Qian Y; Song Y; Bao Y; Zhao J
    Appl Opt; 2019 Nov; 58(32):8751-8756. PubMed ID: 31873652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative electron affinity GaAs wire-array photocathodes.
    Zou J; Ge X; Zhang Y; Deng W; Zhu Z; Wang W; Peng X; Chen Z; Chang B
    Opt Express; 2016 Mar; 24(5):4632-4639. PubMed ID: 29092291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative research on GaAs photocathodes before and after activation.
    Chen L; Qian Y; Chang B
    Appl Opt; 2011 Aug; 50(22):4457-62. PubMed ID: 21833121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation.
    Lv H; Wang C; Li G; Burke R; Krauss TD; Gao Y; Eisenberg R
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11297-11302. PubMed ID: 29073047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoemission from Bialkali Photocathodes through an Atomically Thin Protection Layer.
    Liu F; Guo L; DeFazio J; Pavlenko V; Yamamoto M; Moody NA; Yamaguchi H
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1710-1717. PubMed ID: 34935342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring Photoelectrochemical Performance and Stability of Cu(In,Ga)Se
    Koo B; Nam SW; Haight R; Kim S; Oh S; Cho M; Oh J; Lee JY; Ahn BT; Shin B
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5279-5287. PubMed ID: 28124554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of Photoemission on p-Type GaAs Using Surface Acoustic Waves.
    Dong B; Afanasev A; Johnson R; Zaghloul M
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32344596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of surface carbon on the performance of cesiated p-GaN photocathodes with high quantum efficiency.
    Schaber J; Xiang R; Teichert J; Arnold A; Murcek P; Zwartek P; Ryzhov A; Ma S; Gatzmaga S; Michel P
    Sci Rep; 2023 Feb; 13(1):3188. PubMed ID: 36823224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.