These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 28410930)

  • 1. Ligand diffusion in proteins via enhanced sampling in molecular dynamics.
    Rydzewski J; Nowak W
    Phys Life Rev; 2017 Dec; 22-23():58-74. PubMed ID: 28410930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Memetic algorithms for ligand expulsion from protein cavities.
    Rydzewski J; Nowak W
    J Chem Phys; 2015 Sep; 143(12):124101. PubMed ID: 26428990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Effectively Can Adaptive Sampling Methods Capture Spontaneous Ligand Binding?
    Betz RM; Dror RO
    J Chem Theory Comput; 2019 Mar; 15(3):2053-2063. PubMed ID: 30645108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective simulations of gas diffusion through kinetically accessible tunnels in multisubunit proteins: O2 pathways and escape routes in T-state deoxyhemoglobin.
    Shadrina MS; English AM; Peslherbe GH
    J Am Chem Soc; 2012 Jul; 134(27):11177-84. PubMed ID: 22690872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.
    Arcon JP; Defelipe LA; Modenutti CP; López ED; Alvarez-Garcia D; Barril X; Turjanski AG; Martí MA
    J Chem Inf Model; 2017 Apr; 57(4):846-863. PubMed ID: 28318252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing and combining implicit ligand sampling with multiple steered molecular dynamics to study ligand migration processes in heme proteins.
    Forti F; Boechi L; Estrin DA; Marti MA
    J Comput Chem; 2011 Jul; 32(10):2219-31. PubMed ID: 21541958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New approaches for computing ligand-receptor binding kinetics.
    Bruce NJ; Ganotra GK; Kokh DB; Sadiq SK; Wade RC
    Curr Opin Struct Biol; 2018 Apr; 49():1-10. PubMed ID: 29132080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing Conformational Dynamics of Proteins Using Evolutionary Couplings.
    Feng J; Shukla D
    J Phys Chem B; 2018 Jan; 122(3):1017-1025. PubMed ID: 29293335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled protein-ligand dynamics in truncated hemoglobin N from atomistic simulations and transition networks.
    Cazade PA; Berezovska G; Meuwly M
    Biochim Biophys Acta; 2015 May; 1850(5):996-1005. PubMed ID: 25224733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational studies of transport in ion channels using metadynamics.
    Furini S; Domene C
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1733-40. PubMed ID: 26891818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring transition pathway and free-energy profile of large-scale protein conformational change by combining normal mode analysis and umbrella sampling molecular dynamics.
    Wang J; Shao Q; Xu Z; Liu Y; Yang Z; Cossins BP; Jiang H; Chen K; Shi J; Zhu W
    J Phys Chem B; 2014 Jan; 118(1):134-43. PubMed ID: 24350625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-Binding Calculations with Metadynamics.
    Provasi D
    Methods Mol Biol; 2019; 2022():233-253. PubMed ID: 31396906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taming Rugged Free Energy Landscapes Using an Average Force.
    Fu H; Shao X; Cai W; Chipot C
    Acc Chem Res; 2019 Nov; 52(11):3254-3264. PubMed ID: 31680510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can We Rely on Computational Predictions To Correctly Identify Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and a Protocol for Validation of Predicted Binding Sites.
    Broomhead NK; Soliman ME
    Cell Biochem Biophys; 2017 Mar; 75(1):15-23. PubMed ID: 27796788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational dynamics and membrane interactions of the E. coli outer membrane protein FecA: a molecular dynamics simulation study.
    Piggot TJ; Holdbrook DA; Khalid S
    Biochim Biophys Acta; 2013 Feb; 1828(2):284-93. PubMed ID: 22960041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular dynamics simulations.
    Abbruzzetti S; Spyrakis F; Bidon-Chanal A; Luque FJ; Viappiani C
    Phys Chem Chem Phys; 2013 Jul; 15(26):10686-701. PubMed ID: 23733145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Sampling Simulations of Ligand Unbinding Kinetics Controlled by Protein Conformational Changes.
    Zhou Y; Zou R; Kuang G; Långström B; Halldin C; Ågren H; Tu Y
    J Chem Inf Model; 2019 Sep; 59(9):3910-3918. PubMed ID: 31454236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaussian Accelerated Molecular Dynamics in NAMD.
    Pang YT; Miao Y; Wang Y; McCammon JA
    J Chem Theory Comput; 2017 Jan; 13(1):9-19. PubMed ID: 28034310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computing the binding affinity of a ligand buried deep inside a protein with the hybrid steered molecular dynamics.
    Villarreal OD; Yu L; Rodriguez RA; Chen LY
    Biochem Biophys Res Commun; 2017 Jan; 483(1):203-208. PubMed ID: 28034750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonequilibrium, multiple-timescale simulations of ligand-receptor interactions in structured protein systems.
    Zhang Y; Peters MH; Li Y
    Proteins; 2003 Aug; 52(3):339-48. PubMed ID: 12866048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.