These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28411104)

  • 1. Genetic control of oromotor phenotypes: A survey of licking and ingestive behaviors in highly diverse strains of mice.
    St John SJ; Lu L; Williams RW; Saputra J; Boughter JD
    Physiol Behav; 2017 Aug; 177():34-43. PubMed ID: 28411104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analysis of licking microstructure in three strains of mice.
    Johnson AW; Sherwood A; Smith DR; Wosiski-Kuhn M; Gallagher M; Holland PC
    Appetite; 2010 Apr; 54(2):320-30. PubMed ID: 20006663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C57BL/6J and DBA/2J mice vary in lick rate and ingestive microstructure.
    Boughter JD; Baird JP; Bryant J; St John SJ; Heck D
    Genes Brain Behav; 2007 Oct; 6(7):619-27. PubMed ID: 17212649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of orosensory stimulation to strain differences in oil intake by mice.
    Glendinning JI; Feld N; Goodman L; Bayor R
    Physiol Behav; 2008 Oct; 95(3):476-83. PubMed ID: 18691606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic variance contributes to ingestive processes: a survey of eleven inbred mouse strains for fat (Intralipid) intake.
    Lewis SR; Dym C; Chai C; Singh A; Kest B; Bodnar RJ
    Physiol Behav; 2007 Jan; 90(1):82-94. PubMed ID: 17028044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drinking spout orifice size affects licking behavior in inbred mice.
    Dotson CD; Spector AC
    Physiol Behav; 2005 Aug; 85(5):655-61. PubMed ID: 16083923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the Effect of Physiological Need States on Palatability and Motivation Using Microstructural Analysis of Licking.
    Naneix F; Peters KZ; McCutcheon JE
    Neuroscience; 2020 Nov; 447():155-166. PubMed ID: 31682949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal and qualitative dynamics of conditioned taste aversions in C57BL/6J and DBA/2J mice self-administering LiCl.
    Rebecca Glatt A; St John SJ; Lu L; Boughter JD
    Physiol Behav; 2016 Jan; 153():97-108. PubMed ID: 26524511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial licking responses of mice to sweeteners: effects of tas1r3 polymorphisms.
    Glendinning JI; Chyou S; Lin I; Onishi M; Patel P; Zheng KH
    Chem Senses; 2005 Sep; 30(7):601-14. PubMed ID: 16135742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the dopamine D1-like receptor antagonist SCH 23390 on the microstructure of ingestive behaviour in water-deprived rats licking for water and NaCl solutions.
    Galistu A; D'Aquila PS
    Physiol Behav; 2012 Jan; 105(2):230-3. PubMed ID: 21864553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in intake of sweet and bitter solutions by inbred strains of golden hamsters.
    Frank ME; Wada Y; Makino J; Mizutani M; Umezawa H; Katsuie Y; Hettinger TP; Blizard DA
    Behav Genet; 2004 Jul; 34(4):465-76. PubMed ID: 15082943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drinking microstructure in humans: A proof of concept study of a novel drinkometer in healthy adults.
    Gero D; File B; Justiz J; Steinert RE; Frick L; Spector AC; Bueter M
    Appetite; 2019 Feb; 133():47-60. PubMed ID: 30179650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ingestive taste reactivity as licking behavior.
    Kaplan JM; Roitman MF; Grill HJ
    Neurosci Biobehav Rev; 1995; 19(1):89-98. PubMed ID: 7770200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociation of licking and volume intake controls in rats ingesting glucose and maltodextrin.
    Kaplan JM; Baird JP; Grill HJ
    Behav Neurosci; 2001 Feb; 115(1):188-95. PubMed ID: 11256442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the microstructure of the rhythmic tongue movements of rats ingesting maltose and sucrose solutions.
    Davis JD; Smith GP
    Behav Neurosci; 1992 Feb; 106(1):217-28. PubMed ID: 1554433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioral processes underlying the intake suppressive effects of melanocortin 3/4 receptor activation in the rat.
    Williams DL; Grill HJ; Weiss SM; Baird JP; Kaplan JM
    Psychopharmacology (Berl); 2002 Apr; 161(1):47-53. PubMed ID: 11967630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Within-session changes in licking as a function of sucrose concentration in common marmosets.
    Ishii T; Watanabe S
    Behav Processes; 2010 May; 84(1):536-40. PubMed ID: 20035844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relative affective potency of glycine, L-serine and sucrose as assessed by a brief-access taste test in inbred strains of mice.
    Dotson CD; Spector AC
    Chem Senses; 2004 Jul; 29(6):489-98. PubMed ID: 15269121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inbred mouse strain survey of sucrose intake.
    Lewis SR; Ahmed S; Dym C; Khaimova E; Kest B; Bodnar RJ
    Physiol Behav; 2005 Aug; 85(5):546-56. PubMed ID: 15996693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association between ethanol and sucrose intake in the laboratory mouse: exploration via congenic strains and conditioned taste aversion.
    Blizard DA; McClearn GE
    Alcohol Clin Exp Res; 2000 Mar; 24(3):253-8. PubMed ID: 10776660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.