BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28411216)

  • 1. Construction of a Gene Knockdown System Based on Catalytically Inactive ("Dead") Cas9 (dCas9) in Staphylococcus aureus.
    Zhao C; Shu X; Sun B
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28411216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailor-made gene silencing of Staphylococcus aureus clinical isolates by CRISPR interference.
    Sato'o Y; Hisatsune J; Yu L; Sakuma T; Yamamoto T; Sugai M
    PLoS One; 2018; 13(1):e0185987. PubMed ID: 29377933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus.
    Dong X; Jin Y; Ming D; Li B; Dong H; Wang L; Wang T; Wang D
    J Microbiol Methods; 2017 Aug; 139():79-86. PubMed ID: 28522389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of a Conditional Knockout System for
    Ouellette SP
    Front Cell Infect Microbiol; 2018; 8():59. PubMed ID: 29535977
    [No Abstract]   [Full Text] [Related]  

  • 6. Specific Gene Silencing in Leptospira biflexa by RNA-Guided Catalytically Inactive Cas9 (dCas9).
    Fernandes LGV; Nascimento ALTO
    Methods Mol Biol; 2020; 2134():109-122. PubMed ID: 32632863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene silencing based on RNA-guided catalytically inactive Cas9 (dCas9): a new tool for genetic engineering in Leptospira.
    Fernandes LGV; Guaman LP; Vasconcellos SA; Heinemann MB; Picardeau M; Nascimento ALTO
    Sci Rep; 2019 Feb; 9(1):1839. PubMed ID: 30755626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional Knockdown in Pneumococci Using CRISPR Interference.
    Kjos M
    Methods Mol Biol; 2019; 1968():89-98. PubMed ID: 30929208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform.
    Rock JM; Hopkins FF; Chavez A; Diallo M; Chase MR; Gerrick ER; Pritchard JR; Church GM; Rubin EJ; Sassetti CM; Schnappinger D; Fortune SM
    Nat Microbiol; 2017 Feb; 2():16274. PubMed ID: 28165460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels.
    Depardieu F; Bikard D
    Methods; 2020 Feb; 172():61-75. PubMed ID: 31377338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonspecific toxicities of Streptococcus pyogenes and Staphylococcus aureus dCas9 in Chlamydia trachomatis.
    Wurihan W; Huang Y; Weber AM; Wu X; Fan H
    Pathog Dis; 2019 Dec; 77(9):. PubMed ID: 32011704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors.
    Thakore PI; Kwon JB; Nelson CE; Rouse DC; Gemberling MP; Oliver ML; Gersbach CA
    Nat Commun; 2018 Apr; 9(1):1674. PubMed ID: 29700298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CRISPR Interference Platform for Efficient Genetic Repression in
    Wensing L; Sharma J; Uthayakumar D; Proteau Y; Chavez A; Shapiro RS
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CRISPR Interference System for Efficient and Rapid Gene Knockdown in Caulobacter crescentus.
    Guzzo M; Castro LK; Reisch CR; Guo MS; Laub MT
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and Scalable Precision Genome Editing in
    Penewit K; Holmes EA; McLean K; Ren M; Waalkes A; Salipante SJ
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463653
    [No Abstract]   [Full Text] [Related]  

  • 17. mCAL: A New Approach for Versatile Multiplex Action of Cas9 Using One sgRNA and Loci Flanked by a Programmed Target Sequence.
    Finnigan GC; Thorner J
    G3 (Bethesda); 2016 Jul; 6(7):2147-56. PubMed ID: 27185399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9 in Genome Editing and Beyond.
    Wang H; La Russa M; Qi LS
    Annu Rev Biochem; 2016 Jun; 85():227-64. PubMed ID: 27145843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPRi is not strand-specific at all loci and redefines the transcriptional landscape.
    Howe FS; Russell A; Lamstaes AR; El-Sagheer A; Nair A; Brown T; Mellor J
    Elife; 2017 Oct; 6():. PubMed ID: 29058669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-dCas9-mediated knockdown of prtR, an essential gene in Pseudomonas aeruginosa.
    Xiang L; Qi F; Jiang L; Tan J; Deng C; Wei Z; Jin S; Huang G
    Lett Appl Microbiol; 2020 Oct; 71(4):386-393. PubMed ID: 32506497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.