These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28411539)

  • 1. Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene blue as a model dye.
    García MC; Mora M; Esquivel D; Foster JE; Rodero A; Jiménez-Sanchidrián C; Romero-Salguero FJ
    Chemosphere; 2017 Aug; 180():239-246. PubMed ID: 28411539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor.
    Benetoli LO; Cadorin BM; Baldissarelli VZ; Geremias R; de Souza IG; Debacher NA
    J Hazard Mater; 2012 Oct; 237-238():55-62. PubMed ID: 22980582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified surfatron device to improve microwave-plasma-assisted generation of RONS and methylene blue degradation in water.
    Amaro-Gahete J; Romero-Salguero FJ; Garcia MC
    Chemosphere; 2024 Feb; 349():140820. PubMed ID: 38040253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-Hydrothermal Treated Grape Peel as an Efficient Biosorbent for Methylene Blue Removal.
    Ma L; Jiang C; Lin Z; Zou Z
    Int J Environ Res Public Health; 2018 Jan; 15(2):. PubMed ID: 29385041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic degradation of methylene blue dye from aqueous solution using silver ion-doped TiO₂ and its application to the degradation of real textile wastewater.
    Sahoo C; Gupta AK; Sasidharan Pillai IM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(10):1428-38. PubMed ID: 22571531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective degradation of organic water pollutants by atmospheric non-thermal plasma torch and analysis of degradation process.
    Bansode AS; More SE; Siddiqui EA; Satpute S; Ahmad A; Bhoraskar SV; Mathe VL
    Chemosphere; 2017 Jan; 167():396-405. PubMed ID: 27744197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical oxidation of methylene blue using a Fenton-like reaction.
    Dutta K; Mukhopadhyay S; Bhattacharjee S; Chaudhuri B
    J Hazard Mater; 2001 Jun; 84(1):57-71. PubMed ID: 11376884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The microwave-assisted photo-catalytic degradation of organic dyes.
    Jung SC
    Water Sci Technol; 2011; 63(7):1491-8. PubMed ID: 21508555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and considerable adsorption of methylene blue dye onto graphene oxide.
    Zhang W; Zhou C; Zhou W; Lei A; Zhang Q; Wan Q; Zou B
    Bull Environ Contam Toxicol; 2011 Jul; 87(1):86-90. PubMed ID: 21567134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction and recovery of methylene blue from industrial wastewater using benzoic acid as an extractant.
    Muthuraman G; Teng TT; Leh CP; Norli I
    J Hazard Mater; 2009 Apr; 163(1):363-9. PubMed ID: 18782652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon.
    Ozer A; Dursun G
    J Hazard Mater; 2007 Jul; 146(1-2):262-9. PubMed ID: 17204366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxide-assisted microwave activation of pyrolysis char for adsorption of dyes from wastewater.
    Nair V; Vinu R
    Bioresour Technol; 2016 Sep; 216():511-9. PubMed ID: 27268436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of Solvent Blue and Reactive Yellow removal using microwave radiation in combination with nanoscale zero-valent iron.
    Mao Y; Xi Z; Wang W; Ma C; Yue Q
    J Environ Sci (China); 2015 Apr; 30():164-72. PubMed ID: 25872723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computation of adsorption parameters for the removal of dye from wastewater by microwave assisted sawdust: Theoretical and experimental analysis.
    S S; P SK; A S; P SR; C R
    Environ Toxicol Pharmacol; 2017 Mar; 50():45-57. PubMed ID: 28131076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novelties of combustion synthesized titania ultrafiltration membrane in efficient removal of methylene blue dye from aqueous effluent.
    Doke SM; Yadav GD
    Chemosphere; 2014 Dec; 117():760-5. PubMed ID: 25461945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of methylene blue by lava adsorption and catalysis oxidation.
    Ma J; Zhang J; Li D
    Environ Technol; 2010 Mar; 31(3):267-76. PubMed ID: 20426268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights on degradation of methylene blue using thermocatalytic reactions catalyzed by low-temperature excitation.
    Luo X; Zhang S; Lin X
    J Hazard Mater; 2013 Sep; 260():112-21. PubMed ID: 23747469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.
    Tsai WT; Hsu HC; Su TY; Lin KY; Lin CM
    J Hazard Mater; 2008 Jun; 154(1-3):73-8. PubMed ID: 18006225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of reactive blue 19 by needle-plate non-thermal plasma in different gas atmospheres: Kinetics and responsible active species study assisted by CFD calculations.
    Sun Y; Liu Y; Li R; Xue G; Ognier S
    Chemosphere; 2016 Jul; 155():243-249. PubMed ID: 27124311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrodegradation of methylene blue dye in water and wastewater using lead oxide/titanium modified electrode.
    Abu Ghalwa NM; Zaggout FR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(10):2271-82. PubMed ID: 17018412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.