These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28411551)

  • 1. An alternative whole-body marker set to accurately and reliably quantify joint kinematics during load carriage.
    Lenton GK; Doyle TLA; Saxby DJ; Lloyd DG
    Gait Posture; 2017 May; 54():318-324. PubMed ID: 28411551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative technical marker set for the pelvis is more repeatable than the standard pelvic marker set.
    Borhani M; McGregor AH; Bull AM
    Gait Posture; 2013 Sep; 38(4):1032-7. PubMed ID: 23790572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of different pelvic technical marker sets upon hip kinematics during gait.
    Langley B; Page R; Greig M
    Gait Posture; 2019 Jun; 71():74-78. PubMed ID: 31015185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of alternative technical markers for the pelvic coordinate system.
    Kisho Fukuchi R; Arakaki C; Veras Orselli MI; Duarte M
    J Biomech; 2010 Feb; 43(3):592-4. PubMed ID: 19880124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of pelvis kinematics in level walking based on a single inertial sensor positioned close to the sacrum: validation on healthy subjects with stereophotogrammetric system.
    Buganè F; Benedetti MG; D'Angeli V; Leardini A
    Biomed Eng Online; 2014 Oct; 13():146. PubMed ID: 25336170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of a lateral pelvic cluster technical system in evaluating running kinematics.
    Liew BXW; Morris S; Robinson MA; Netto K
    J Biomech; 2016 Jun; 49(9):1989-1993. PubMed ID: 27207384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.
    Boser QA; Valevicius AM; Lavoie EB; Chapman CS; Pilarski PM; Hebert JS; Vette AH
    J Biomech; 2018 Apr; 72():228-234. PubMed ID: 29530500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of pelvic soft tissue artifact in multiple static positions.
    Hara R; Sangeux M; Baker R; McGinley J
    Gait Posture; 2014 Feb; 39(2):712-7. PubMed ID: 24220204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower extremity kinematics during walking and elliptical training in individuals with and without traumatic brain injury.
    Buster T; Burnfield J; Taylor AP; Stergiou N
    J Neurol Phys Ther; 2013 Dec; 37(4):176-86. PubMed ID: 24189335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of load carriage systems used by active duty police officers: Relative effects on walking patterns and perceived comfort.
    Ramstrand N; Zügner R; Larsen LB; Tranberg R
    Appl Ergon; 2016 Mar; 53 Pt A():36-43. PubMed ID: 26674402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of tibia marker placement on knee joint kinematic analysis.
    Wen Y; Huang H; Yu Y; Zhang S; Yang J; Ao Y; Xia S
    Gait Posture; 2018 Feb; 60():99-103. PubMed ID: 29175641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of thigh and shank marker quantity on lower extremity kinematics using a constrained model.
    Slater AA; Hullfish TJ; Baxter JR
    BMC Musculoskelet Disord; 2018 Nov; 19(1):399. PubMed ID: 30424811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-session repeatability of markerless motion capture gait kinematics.
    Kanko RM; Laende E; Selbie WS; Deluzio KJ
    J Biomech; 2021 May; 121():110422. PubMed ID: 33873117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Different Marker Sets Affect Joint Angles in Inverse Kinematics Framework.
    Mantovani G; Lamontagne M
    J Biomech Eng; 2017 Apr; 139(4):. PubMed ID: 27636354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trunk-pelvis motion, joint loads, and muscle forces during walking with a transtibial amputation.
    Yoder AJ; Petrella AJ; Silverman AK
    Gait Posture; 2015 Mar; 41(3):757-62. PubMed ID: 25748611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walking more slowly than with normal velocity: The influence on trunk and pelvis kinematics in young and older healthy persons.
    Swinnen E; Baeyens JP; Pintens S; Buyl R; Goossens M; Meeusen R; Kerckhofs E
    Clin Biomech (Bristol, Avon); 2013 Aug; 28(7):800-6. PubMed ID: 23856336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-validation of marker configurations to measure pelvic kinematics in gait.
    Vogt L; Portscher M; Brettmann K; Pfeifer K; Banzer W
    Gait Posture; 2003 Dec; 18(3):178-84. PubMed ID: 14667951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body weight support during robot-assisted walking: influence on the trunk and pelvis kinematics.
    Swinnen E; Baeyens JP; Hens G; Knaepen K; Beckwée D; Michielsen M; Clijsen R; Kerckhofs E
    NeuroRehabilitation; 2015; 36(1):81-91. PubMed ID: 25547772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of markerless motion capture in gait recognition.
    Sandau M
    Dan Med J; 2016 Mar; 63(3):. PubMed ID: 26931198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative modelling procedures for pelvic marker occlusion during motion analysis.
    McClelland JA; Webster KE; Grant C; Feller J
    Gait Posture; 2010 Apr; 31(4):415-9. PubMed ID: 20176486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.