These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28411601)

  • 1. Kinetic Monte Carlo simulations of GaN homoepitaxy on c- and m-plane surfaces.
    Xu D; Zapol P; Stephenson GB; Thompson C
    J Chem Phys; 2017 Apr; 146(14):144702. PubMed ID: 28411601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An atomistic mechanism study of GaN step-flow growth in vicinal m-plane orientations.
    Liu Z; Wang RZ; Zapol P
    Phys Chem Chem Phys; 2016 Oct; 18(42):29239-29248. PubMed ID: 27731436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorbate interactions on the GaN(0001) surface and their effect on diffusion barriers and growth morphology.
    Chugh M; Ranganathan M
    Phys Chem Chem Phys; 2017 Jan; 19(3):2111-2123. PubMed ID: 28045144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instability and wavelength selection during step flow growth of metal surfaces vicinal to fcc(001).
    Rusanen M; Koponen IT; Heinonen J; Ala-Nissila T
    Phys Rev Lett; 2001 Jun; 86(23):5317-20. PubMed ID: 11384487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Range Orbital Hybridization in Remote Epitaxy: The Nucleation Mechanism of GaN on Different Substrates
    Qu Y; Xu Y; Cao B; Wang Y; Wang J; Shi L; Xu K
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2263-2274. PubMed ID: 34978790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic Layer Epitaxy of III-Nitrides: A Microscopic Model of Homoepitaxial Growth.
    Erwin SC; Lyons JL
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):49245-49251. PubMed ID: 33064455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial stage of cubic GaN for heterophase epitaxial growth induced on nanoscale v-grooved Si(001) in metal-organic vapor-phase epitaxy.
    Lee SC; Jiang YB; Durniak M; Wetzel C; Brueck SRJ
    Nanotechnology; 2019 Jan; 30(2):025711. PubMed ID: 30411717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-field method for epitaxial kinetics on surfaces.
    Posthuma de Boer J; Ford IJ; Kantorovich L; Vvedensky DD
    J Chem Phys; 2018 Nov; 149(19):194107. PubMed ID: 30466263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An examination of scaling behavior in unstable epitaxial mound growth via kinetic Monte Carlo simulations.
    Schneider JP; Margetis D; Gibou F; Ratsch C
    J Phys Condens Matter; 2019 Sep; 31(36):365301. PubMed ID: 31071698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interlayer diffusion of Au atoms in a heteroepitaxial system.
    Ogura S; Fukutani K
    J Phys Condens Matter; 2009 Nov; 21(47):474210. PubMed ID: 21832489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of tensile strain on Ag(111) epitaxial growth by kinetic Monte Carlo simulations.
    Matsunaka D; Shibutani Y
    J Phys Condens Matter; 2011 Jul; 23(26):265008. PubMed ID: 21673405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale Kinetic Monte Carlo Simulation of Self-Organized Growth of GaN/AlN Quantum Dots.
    Budagosky JA; García-Cristóbal A
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ehrlich-Schwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach.
    Gianfrancesco AG; Tselev A; Baddorf AP; Kalinin SV; Vasudevan RK
    Nanotechnology; 2015 Nov; 26(45):455705. PubMed ID: 26489518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structural investigation of highly ordered catalyst- and mask-free GaN nanorods.
    Figge S; Aschenbrenner T; Kruse C; Kunert G; Schowalter M; Rosenauer A; Hommel D
    Nanotechnology; 2011 Jan; 22(2):025603. PubMed ID: 21139192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces.
    Gruber J; Zhou XW; Jones RE; Lee SR; Tucker GJ
    J Appl Phys; 2017 May; 121(19):195301. PubMed ID: 28611488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing cubic and hexagonal phases within InGaN/GaN microstructures using electron energy loss spectroscopy.
    Griffiths IJ; Cherns D; Albert S; Bengoechea-Encabo A; Angel Sanchez M; Calleja E; Schimpke T; Strassburg M
    J Microsc; 2016 May; 262(2):167-70. PubMed ID: 26366483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraordinary N atom tunneling in formation of InN shell layer on GaN nanorod m-plane sidewall.
    Cai D; Lin N; Xu H; Liao CH; Yang CC
    Nanotechnology; 2014 Dec; 25(49):495705. PubMed ID: 25412649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth kinetics of disk-shaped copper islands in electrochemical deposition.
    Guo L; Zhang S; Searson P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051601. PubMed ID: 19518461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanowires as semi-rigid substrates for growth of thick, In(x)Ga(1-x)N (x > 0.4) epi-layers without phase segregation for photoelectrochemical water splitting.
    Pendyala C; Jasinski JB; Kim JH; Vendra VK; Lisenkov S; Menon M; Sunkara MK
    Nanoscale; 2012 Oct; 4(20):6269-75. PubMed ID: 22968333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dislocation-induced nanoparticle decoration on a GaN nanowire.
    Yang B; Yuan F; Liu Q; Huang N; Qiu J; Staedler T; Liu B; Jiang X
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2790-6. PubMed ID: 25562572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.