BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 28411645)

  • 1. Polymer-Based Protein Engineering: Synthesis and Characterization of Armored, High Graft Density Polymer-Protein Conjugates.
    Carmali S; Murata H; Cummings C; Matyjaszewski K; Russell AJ
    Methods Enzymol; 2017; 590():347-380. PubMed ID: 28411645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring enzyme activity and stability using polymer-based protein engineering.
    Cummings C; Murata H; Koepsel R; Russell AJ
    Biomaterials; 2013 Oct; 34(30):7437-43. PubMed ID: 23849877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational tailoring of substrate and inhibitor affinity via ATRP polymer-based protein engineering.
    Murata H; Cummings CS; Koepsel RR; Russell AJ
    Biomacromolecules; 2014 Jul; 15(7):2817-23. PubMed ID: 24954523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer-based protein engineering can rationally tune enzyme activity, pH-dependence, and stability.
    Murata H; Cummings CS; Koepsel RR; Russell AJ
    Biomacromolecules; 2013 Jun; 14(6):1919-26. PubMed ID: 23600667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaches for Conjugating Tailor-Made Polymers to Proteins.
    Paeth M; Stapleton J; Dougherty ML; Fischesser H; Shepherd J; McCauley M; Falatach R; Page RC; Berberich JA; Konkolewicz D
    Methods Enzymol; 2017; 590():193-224. PubMed ID: 28411638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dramatically increased pH and temperature stability of chymotrypsin using dual block polymer-based protein engineering.
    Cummings C; Murata H; Koepsel R; Russell AJ
    Biomacromolecules; 2014 Mar; 15(3):763-71. PubMed ID: 24506329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of Stomach Acid-Stable and Mucin-Binding Enzyme Polymer Conjugates.
    Cummings CS; Campbell AS; Baker SL; Carmali S; Murata H; Russell AJ
    Biomacromolecules; 2017 Feb; 18(2):576-586. PubMed ID: 28081602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell.
    Campbell AS; Murata H; Carmali S; Matyjaszewski K; Islam MF; Russell AJ
    Biosens Bioelectron; 2016 Dec; 86():446-453. PubMed ID: 27424262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous-based initiator attachment and ATRP grafting of polymer brushes from poly(methyl methacrylate) substrates.
    Balamurugan SS; Subramanian B; Bolivar JG; McCarley RL
    Langmuir; 2012 Oct; 28(40):14254-60. PubMed ID: 22967226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled Radical Polymerization as an Enabling Approach for the Next Generation of Protein-Polymer Conjugates.
    Pelegri-O'Day EM; Maynard HD
    Acc Chem Res; 2016 Sep; 49(9):1777-85. PubMed ID: 27588677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native protein-initiated ATRP: a viable and potentially superior alternative to PEGylation for stabilizing biologics.
    Depp V; Alikhani A; Grammer V; Lele BS
    Acta Biomater; 2009 Feb; 5(2):560-9. PubMed ID: 18804423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streptavidin as a macroinitiator for polymerization: in situ protein-polymer conjugate formation.
    Bontempo D; Maynard HD
    J Am Chem Soc; 2005 May; 127(18):6508-9. PubMed ID: 15869252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of uniform protein-polymer conjugates.
    Lele BS; Murata H; Matyjaszewski K; Russell AJ
    Biomacromolecules; 2005; 6(6):3380-7. PubMed ID: 16283769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PNIPAM grafted surfaces through ATRP and RAFT polymerization: Chemistry and bioadhesion.
    Conzatti G; Cavalie S; Combes C; Torrisani J; Carrere N; Tourrette A
    Colloids Surf B Biointerfaces; 2017 Mar; 151():143-155. PubMed ID: 27992845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of bioactive compounds on capillary inner surfaces bearing a dense thermoresponsive polymer brush.
    Koriyama T; Takayama Y; Hisatsune C; Asoh TA; Kikuchi A
    J Biomater Sci Polym Ed; 2017; 28(10-12):900-912. PubMed ID: 27827558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of lignin nanofibers with ionic-responsive shells: water-expandable lignin-based nanofibrous mats.
    Gao G; Dallmeyer JI; Kadla JF
    Biomacromolecules; 2012 Nov; 13(11):3602-10. PubMed ID: 22988814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring Site Specificity of Bioconjugation Using Step-Wise Atom-Transfer Radical Polymerization on Proteins.
    Carmali S; Murata H; Matyjaszewski K; Russell AJ
    Biomacromolecules; 2018 Oct; 19(10):4044-4051. PubMed ID: 30189145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length.
    Lego B; François M; Skene WG; Giasson S
    Langmuir; 2009 May; 25(9):5313-21. PubMed ID: 19256467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of protein nano-objects by assembly of polymer-grafted proteins.
    Fukui Y; Sakai D; Fujimoto K
    Colloids Surf B Biointerfaces; 2016 Dec; 148():503-510. PubMed ID: 27686514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-active and stimuli-responsive polymer--Si(100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion.
    Xu FJ; Zhong SP; Yung LY; Kang ET; Neoh KG
    Biomacromolecules; 2004; 5(6):2392-403. PubMed ID: 15530056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.