BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28411650)

  • 1. Armoring Enzymes by Metal-Organic Frameworks by the Coprecipitation Method.
    Hou M; Ge J
    Methods Enzymol; 2017; 590():59-75. PubMed ID: 28411650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment.
    Wu X; Ge J; Yang C; Hou M; Liu Z
    Chem Commun (Camb); 2015 Sep; 51(69):13408-11. PubMed ID: 26214658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-Organic Framework in Situ Post-Encapsulating DNA-Enzyme Composites on a Magnetic Carrier with High Stability and Reusability.
    Zhou Z; Gao Z; Shen H; Li M; He W; Su P; Song J; Yang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7510-7517. PubMed ID: 31971363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic Liquid/Metal-Organic Framework Composites: From Synthesis to Applications.
    Kinik FP; Uzun A; Keskin S
    ChemSusChem; 2017 Jul; 10(14):2842-2863. PubMed ID: 28556605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating the Biofunctionality of Metal-Organic-Framework-Encapsulated Enzymes through Controllable Embedding Patterns.
    Chen G; Kou X; Huang S; Tong L; Shen Y; Zhu W; Zhu F; Ouyang G
    Angew Chem Int Ed Engl; 2020 Feb; 59(7):2867-2874. PubMed ID: 31749284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical Micro- and Mesoporous Zn-Based Metal-Organic Frameworks Templated by Hydrogels: Their Use for Enzyme Immobilization and Catalysis of Knoevenagel Reaction.
    Cheng K; Svec F; Lv Y; Tan T
    Small; 2019 Oct; 15(44):e1902927. PubMed ID: 31513349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of glucoamylase embedded metal-organic frameworks (glucoamylase-MOF) with enhanced stability.
    Nadar SS; Rathod VK
    Int J Biol Macromol; 2017 Feb; 95():511-519. PubMed ID: 27889341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.
    Gu ZY; Yang CX; Chang N; Yan XP
    Acc Chem Res; 2012 May; 45(5):734-45. PubMed ID: 22404189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the size effect on enzymatic electrochemical detection based on metal-organic frameworks.
    Feng Y; Zhao Y; Ge J
    Anal Chim Acta; 2021 Mar; 1149():238191. PubMed ID: 33551062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic-metal organic framework (magnetic-MOF): A novel platform for enzyme immobilization and nanozyme applications.
    Nadar SS; Rathod VK
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2293-2302. PubMed ID: 30172813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid mechanochemical encapsulation of biocatalysts into robust metal-organic frameworks.
    Wei TH; Wu SH; Huang YD; Lo WS; Williams BP; Chen SY; Yang HC; Hsu YS; Lin ZY; Chen XH; Kuo PE; Chou LY; Tsung CK; Shieh FK
    Nat Commun; 2019 Nov; 10(1):5002. PubMed ID: 31676820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Organic Frameworks at the Biointerface: Synthetic Strategies and Applications.
    Doonan C; Riccò R; Liang K; Bradshaw D; Falcaro P
    Acc Chem Res; 2017 Jun; 50(6):1423-1432. PubMed ID: 28489346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Armored Enzyme-Nanohybrids and Their Catalytic Function Under Challenging Conditions.
    Zore OV; Kasi RM; Kumar CV
    Methods Enzymol; 2017; 590():169-192. PubMed ID: 28411637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological Chitin-MOF Composites with Hierarchical Pore Systems for Air-Filtration Applications.
    Wisser D; Wisser FM; Raschke S; Klein N; Leistner M; Grothe J; Brunner E; Kaskel S
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12588-91. PubMed ID: 26314273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Frameworks: A Potential Platform for Enzyme Immobilization and Related Applications.
    Xia H; Li N; Zhong X; Jiang Y
    Front Bioeng Biotechnol; 2020; 8():695. PubMed ID: 32695766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in adsorption-based CO2 capture by metal-organic frameworks.
    Liu J; Thallapally PK; McGrail BP; Brown DR; Liu J
    Chem Soc Rev; 2012 Mar; 41(6):2308-22. PubMed ID: 22143077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-MOF (metal-organic framework) composites.
    Lian X; Fang Y; Joseph E; Wang Q; Li J; Banerjee S; Lollar C; Wang X; Zhou HC
    Chem Soc Rev; 2017 Jun; 46(11):3386-3401. PubMed ID: 28451673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart Approach for In Situ One-Step Encapsulation and Controlled Delivery of a Chemotherapeutic Drug using Metal-Organic Framework-Drug Composites in Aqueous Media.
    Adhikari C; Chakraborty A
    Chemphyschem; 2016 Apr; 17(7):1070-7. PubMed ID: 26752093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities.
    Lyu F; Zhang Y; Zare RN; Ge J; Liu Z
    Nano Lett; 2014 Oct; 14(10):5761-5. PubMed ID: 25211437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation.
    Manna K; Zhang T; Greene FX; Lin W
    J Am Chem Soc; 2015 Feb; 137(7):2665-73. PubMed ID: 25640998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.