BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 28411854)

  • 1. The Molecular Revolution in Cutaneous Biology: Chromosomal Territories, Higher-Order Chromatin Remodeling, and the Control of Gene Expression in Keratinocytes.
    Botchkarev VA
    J Invest Dermatol; 2017 May; 137(5):e93-e99. PubMed ID: 28411854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic regulation of gene expression in keratinocytes.
    Botchkarev VA; Gdula MR; Mardaryev AN; Sharov AA; Fessing MY
    J Invest Dermatol; 2012 Nov; 132(11):2505-21. PubMed ID: 22763788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remodeling of three-dimensional organization of the nucleus during terminal keratinocyte differentiation in the epidermis.
    Gdula MR; Poterlowicz K; Mardaryev AN; Sharov AA; Peng Y; Fessing MY; Botchkarev VA
    J Invest Dermatol; 2013 Sep; 133(9):2191-201. PubMed ID: 23407401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.
    Poterlowicz K; Yarker JL; Malashchuk I; Lajoie BR; Mardaryev AN; Gdula MR; Sharov AA; Kohwi-Shigematsu T; Botchkarev VA; Fessing MY
    PLoS Genet; 2017 Sep; 13(9):e1006966. PubMed ID: 28863138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p63 and Brg1 control developmentally regulated higher-order chromatin remodelling at the epidermal differentiation complex locus in epidermal progenitor cells.
    Mardaryev AN; Gdula MR; Yarker JL; Emelianov VU; Poterlowicz K; Sharov AA; Sharova TY; Scarpa JA; Joffe B; Solovei I; Chambon P; Botchkarev VA; Fessing MY
    Development; 2014 Jan; 141(1):101-11. PubMed ID: 24346698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic gene regulation, chromatin structure, and force-induced chromatin remodelling in epidermal development and homeostasis.
    Miroshnikova YA; Cohen I; Ezhkova E; Wickström SA
    Curr Opin Genet Dev; 2019 Apr; 55():46-51. PubMed ID: 31112907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of the Transcription Factor-Regulated and Epigenetic Mechanisms in the Control of Keratinocyte Differentiation.
    Botchkarev VA
    J Investig Dermatol Symp Proc; 2015 Nov; 17(2):30-2. PubMed ID: 26551942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p63 Transcription Factor Regulates Nuclear Shape and Expression of Nuclear Envelope-Associated Genes in Epidermal Keratinocytes.
    Rapisarda V; Malashchuk I; Asamaowei IE; Poterlowicz K; Fessing MY; Sharov AA; Karakesisoglou I; Botchkarev VA; Mardaryev A
    J Invest Dermatol; 2017 Oct; 137(10):2157-2167. PubMed ID: 28595999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Molecular Revolution in Cutaneous Biology: EDC and Locus Control.
    Oh IY; de Guzman Strong C
    J Invest Dermatol; 2017 May; 137(5):e101-e104. PubMed ID: 28411839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear topology, epigenetics, and keratinocyte differentiation.
    Hughes MW; Lu W; Chuong CM
    J Invest Dermatol; 2013 Sep; 133(9):2130-3. PubMed ID: 23949766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic Mechanisms of Epidermal Differentiation.
    Moltrasio C; Romagnuolo M; Marzano AV
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic aspects of differentiation.
    Arney KL; Fisher AG
    J Cell Sci; 2004 Sep; 117(Pt 19):4355-63. PubMed ID: 15331660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states.
    Klein RH; Lin Z; Hopkin AS; Gordon W; Tsoi LC; Liang Y; Gudjonsson JE; Andersen B
    PLoS Genet; 2017 Apr; 13(4):e1006745. PubMed ID: 28445475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel ATAC-seq approach reveals lineage-specific reinforcement of the open chromatin landscape via cooperation between BAF and p63.
    Bao X; Rubin AJ; Qu K; Zhang J; Giresi PG; Chang HY; Khavari PA
    Genome Biol; 2015 Dec; 16():284. PubMed ID: 26683334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal rearrangements during human epidermal keratinocyte differentiation.
    Marella NV; Seifert B; Nagarajan P; Sinha S; Berezney R
    J Cell Physiol; 2009 Oct; 221(1):139-46. PubMed ID: 19626667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation.
    Eckert RL; Crish JF; Robinson NA
    Physiol Rev; 1997 Apr; 77(2):397-424. PubMed ID: 9114819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of DNA Methylation and Expression Pattern of S100 and Other Epidermal Differentiation Complex Genes in Differentiating Keratinocytes.
    Sobiak B; Graczyk-Jarzynka A; Leśniak W
    J Cell Biochem; 2016 May; 117(5):1092-8. PubMed ID: 26443750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic chromatin organization: Role in development and disease.
    Kuznetsova T; Stunnenberg HG
    Int J Biochem Cell Biol; 2016 Jul; 76():119-22. PubMed ID: 27179794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tet-Mediated DNA Demethylation Is Required for SWI/SNF-Dependent Chromatin Remodeling and Histone-Modifying Activities That Trigger Expression of the Sp7 Osteoblast Master Gene during Mesenchymal Lineage Commitment.
    Sepulveda H; Villagra A; Montecino M
    Mol Cell Biol; 2017 Oct; 37(20):. PubMed ID: 28784721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rat epidermal keratinocytes as an organotypic model for examining the role of Cx43 and Cx26 in skin differentiation.
    Maher AC; Thomas T; Riley JL; Veitch G; Shao Q; Laird DW
    Cell Commun Adhes; 2005; 12(5-6):219-30. PubMed ID: 16531317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.