These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
536 related articles for article (PubMed ID: 28411868)
1. High resolution stream water quality assessment in the Vancouver, British Columbia region: a citizen science study. Shupe SM Sci Total Environ; 2017 Dec; 603-604():745-759. PubMed ID: 28411868 [TBL] [Abstract][Full Text] [Related]
2. Land use affects total dissolved nitrogen and nitrate concentrations in tropical montane streams in Kenya. Jacobs SR; Breuer L; Butterbach-Bahl K; Pelster DE; Rufino MC Sci Total Environ; 2017 Dec; 603-604():519-532. PubMed ID: 28645050 [TBL] [Abstract][Full Text] [Related]
3. Statistical assessment of nonpoint source pollution in agricultural watersheds in the Lower Grand River watershed, MO, USA. Jabbar FK; Grote K Environ Sci Pollut Res Int; 2019 Jan; 26(2):1487-1506. PubMed ID: 30430446 [TBL] [Abstract][Full Text] [Related]
4. Land use impacts on river health of Uma Oya, Sri Lanka: implications of spatial scales. Jayawardana JM; Gunawardana WD; Udayakumara EP; Westbrooke M Environ Monit Assess; 2017 Apr; 189(4):192. PubMed ID: 28357718 [TBL] [Abstract][Full Text] [Related]
6. 15N-Nitrate signature in low-order streams: effects of land cover and agricultural practices. Lefebvre S; Clément JC; Pinay G; Thenail C; Durand P; Marmonier P Ecol Appl; 2007 Dec; 17(8):2333-46. PubMed ID: 18213973 [TBL] [Abstract][Full Text] [Related]
7. Importance of the vegetation-groundwater-stream continuum to understand transformation of biogenic carbon in aquatic systems - A case study based on a pine-maize comparison in a lowland sandy watershed (Landes de Gascogne, SW France). Deirmendjian L; Anschutz P; Morel C; Mollier A; Augusto L; Loustau D; Cotovicz LC; Buquet D; Lajaunie K; Chaillou G; Voltz B; Charbonnier C; Poirier D; Abril G Sci Total Environ; 2019 Apr; 661():613-629. PubMed ID: 30682612 [TBL] [Abstract][Full Text] [Related]
8. Evaluating the applicability of MESS (matrix exponential spatial specification) model to assess water quality using GIS technique in agricultural mountain catchment (Western Carpathian). Halecki W; Stachura T; Fudała W; Rusnak M Environ Monit Assess; 2018 Dec; 191(1):26. PubMed ID: 30574668 [TBL] [Abstract][Full Text] [Related]
9. Effects of River Discharge and Land Use and Land Cover (LULC) on Water Quality Dynamics in Migina Catchment, Rwanda. Uwimana A; van Dam A; Gettel G; Bigirimana B; Irvine K Environ Manage; 2017 Sep; 60(3):496-512. PubMed ID: 28660371 [TBL] [Abstract][Full Text] [Related]
10. Forest cover correlates with good biological water quality. Insights from a regional study (Wallonia, Belgium). Brogna D; Dufrêne M; Michez A; Latli A; Jacobs S; Vincke C; Dendoncker N J Environ Manage; 2018 Apr; 211():9-21. PubMed ID: 29408087 [TBL] [Abstract][Full Text] [Related]
11. Land cover impacts on storm flow suspended solid and nutrient concentrations in southwest Ohio streams. Lazar JA; Spahr R; Grudzinski BP; Fisher TJ Water Environ Res; 2019 Jun; 91(6):510-522. PubMed ID: 30667123 [TBL] [Abstract][Full Text] [Related]
12. Statistical and spatial analysis of land cover impact on selected Metro Vancouver, British Columbia watersheds. Shupe S Environ Manage; 2013 Jan; 51(1):18-31. PubMed ID: 23076660 [TBL] [Abstract][Full Text] [Related]
13. Controls on nutrients across a prairie stream watershed: land use and riparian cover effects. Dodds WK; Oakes RM Environ Manage; 2006 May; 37(5):634-46. PubMed ID: 16485163 [TBL] [Abstract][Full Text] [Related]
14. Water quality assessment of a small peri-urban river using low and high frequency monitoring. Ivanovsky A; Criquet J; Dumoulin D; Alary C; Prygiel J; Duponchel L; Billon G Environ Sci Process Impacts; 2016 May; 18(5):624-37. PubMed ID: 27145836 [TBL] [Abstract][Full Text] [Related]
15. Native forest cover safeguards stream water quality under a changing climate. Piffer PR; Tambosi LR; Ferraz SFB; Metzger JP; Uriarte M Ecol Appl; 2021 Oct; 31(7):e02414. PubMed ID: 34260786 [TBL] [Abstract][Full Text] [Related]
16. Characterization of sub-watershed-scale stream chemistry regimes in an Appalachian mixed-land-use watershed. Kellner E; Hubbart J; Stephan K; Morrissey E; Freedman Z; Kutta E; Kelly C Environ Monit Assess; 2018 Sep; 190(10):586. PubMed ID: 30215141 [TBL] [Abstract][Full Text] [Related]
17. Modeling the effect of land use/land cover on nitrogen, phosphorous and dissolved oxygen loads in the Velhas River using the concept of exclusive contribution area. de Oliveira LM; Maillard P; de Andrade Pinto ÉJ Environ Monit Assess; 2016 Jun; 188(6):333. PubMed ID: 27154054 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the impact of turbidity, precipitation, and land use on nutrient levels and atrazine concentrations in Illinois surface water as determined by citizen scientists. Joseph N; Sangster J; Topping M; Bartelt-Hunt S; Kolok AS Sci Total Environ; 2022 Dec; 850():158081. PubMed ID: 35985591 [TBL] [Abstract][Full Text] [Related]
19. Nitrate relationships between stream baseflow, well water, and land use in the Tomorrow-Waupaca Watershed. Lin H; Cook R; Shaw B ScientificWorldJournal; 2001 Oct; 1 Suppl 2():187-93. PubMed ID: 12805870 [TBL] [Abstract][Full Text] [Related]
20. The contribution of volunteer-based monitoring data to the assessment of harmful phytoplankton blooms in Brazilian urban streams. Cunha DGF; Casali SP; de Falco PB; Thornhill I; Loiselle SA Sci Total Environ; 2017 Apr; 584-585():586-594. PubMed ID: 28169029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]