BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 28412243)

  • 1. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments.
    Patheja P; Sahu K
    Exp Cell Res; 2017 Jun; 355(2):182-193. PubMed ID: 28412243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated transcriptomic and proteomic analysis of microplasts derived from macrophage-conditioned medium-treated MCF-7 breast cancer cells.
    Melwani PK; Balla MMS; S N; Padwal M; Chaurasia RK; Basu B; Ghosh A; Pandey BN
    FEBS Lett; 2021 Jul; 595(13):1844-1860. PubMed ID: 33993482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrophages enhance 3D invasion in a breast cancer cell line by induction of tumor cell tunneling nanotubes.
    Carter KP; Hanna S; Genna A; Lewis D; Segall JE; Cox D
    Cancer Rep (Hoboken); 2019 Dec; 2(6):e1213. PubMed ID: 32467880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells.
    Lee CW; Kuo CC; Liang CJ; Pan HJ; Shen CN; Lee CH
    BMC Mol Cell Biol; 2022 Jul; 23(1):26. PubMed ID: 35794526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking.
    Sáenz-de-Santa-María I; Henderson JM; Pepe A; Zurzolo C
    Curr Protoc; 2023 Nov; 3(11):e939. PubMed ID: 37994667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic Methods for Analysis of Macrophage-Induced Tunneling Nanotubes.
    Carter KP; Segall JE; Cox D
    Methods Mol Biol; 2020; 2108():273-279. PubMed ID: 31939188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The growth determinants and transport properties of tunneling nanotube networks between B lymphocytes.
    Osteikoetxea-Molnár A; Szabó-Meleg E; Tóth EA; Oszvald Á; Izsépi E; Kremlitzka M; Biri B; Nyitray L; Bozó T; Németh P; Kellermayer M; Nyitrai M; Matko J
    Cell Mol Life Sci; 2016 Dec; 73(23):4531-4545. PubMed ID: 27125884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells.
    Thayanithy V; Babatunde V; Dickson EL; Wong P; Oh S; Ke X; Barlas A; Fujisawa S; Romin Y; Moreira AL; Downey RJ; Steer CJ; Subramanian S; Manova-Todorova K; Moore MAS; Lou E
    Exp Cell Res; 2014 Apr; 323(1):178-188. PubMed ID: 24468420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunneling nanotube formation promotes survival against 5-fluorouracil in MCF-7 breast cancer cells.
    Kato K; Nguyen KT; Decker CW; Silkwood KH; Eck SM; Hernandez JB; Garcia J; Han D
    FEBS Open Bio; 2022 Jan; 12(1):203-210. PubMed ID: 34738322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunneling nanotube (TNT) formation is downregulated by cytarabine and NF-κB inhibition in acute myeloid leukemia (AML).
    Omsland M; Bruserud Ø; Gjertsen BT; Andresen V
    Oncotarget; 2017 Jan; 8(5):7946-7963. PubMed ID: 27974700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MAPK Signaling Is Required for Generation of Tunneling Nanotube-Like Structures in Ovarian Cancer Cells.
    Cole JM; Dahl R; Cowden Dahl KD
    Cancers (Basel); 2021 Jan; 13(2):. PubMed ID: 33450985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Communication of Ca(2+) signals via tunneling membrane nanotubes is mediated by transmission of inositol trisphosphate through gap junctions.
    Lock JT; Parker I; Smith IF
    Cell Calcium; 2016 Oct; 60(4):266-72. PubMed ID: 27388952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunneling nanotube-transmitted mechanical signal and its cellular response.
    Wang Y; Han X; Deng L; Wang X
    Biochem Biophys Res Commun; 2024 Jan; 693():149368. PubMed ID: 38091838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunneling nanotubes evoke pericyte/endothelial communication during normal and tumoral angiogenesis.
    Errede M; Mangieri D; Longo G; Girolamo F; de Trizio I; Vimercati A; Serio G; Frei K; Perris R; Virgintino D
    Fluids Barriers CNS; 2018 Oct; 15(1):28. PubMed ID: 30290761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunneling Nanotubes: A Versatile Target for Cancer Therapy.
    Sahu P; Jena SR; Samanta L
    Curr Cancer Drug Targets; 2018; 18(6):514-521. PubMed ID: 29189162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance.
    Hekmatshoar Y; Nakhle J; Galloni M; Vignais ML
    Biochem J; 2018 Jul; 475(14):2305-2328. PubMed ID: 30064989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunneling nanotubes: emerging view of their molecular components and formation mechanisms.
    Kimura S; Hase K; Ohno H
    Exp Cell Res; 2012 Aug; 318(14):1699-706. PubMed ID: 22652450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking.
    Abounit S; Delage E; Zurzolo C
    Curr Protoc Cell Biol; 2015 Jun; 67():12.10.1-12.10.21. PubMed ID: 26061240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrophage polarization impacts tunneling nanotube formation and intercellular organelle trafficking.
    Goodman S; Naphade S; Khan M; Sharma J; Cherqui S
    Sci Rep; 2019 Oct; 9(1):14529. PubMed ID: 31601865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells.
    Bukoreshtliev NV; Wang X; Hodneland E; Gurke S; Barroso JF; Gerdes HH
    FEBS Lett; 2009 May; 583(9):1481-8. PubMed ID: 19345217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.