BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 2841225)

  • 41. Molecular cloning of human satellite DNA sequences and their use in detecting DNA polymorphism.
    Ehtesham NZ; Talwar GP; Ali A; Hasnain SE
    Indian J Biochem Biophys; 1990 Oct; 27(5):275-9. PubMed ID: 2079331
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TaqI reveals two independent alphoid polymorphisms on human chromosomes 13 and 21.
    Marçais B; Gérard A; Bellis M; Roizès G
    Hum Genet; 1991 Jan; 86(3):307-10. PubMed ID: 1671771
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of cloned satellite DNA sequences to molecular-cytogenetic analysis of constitutive heterochromatin heteromorphisms in man.
    Yurov YB; Mitkevich SP; Alexandrov IA
    Hum Genet; 1987 Jun; 76(2):157-64. PubMed ID: 3475246
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural organization and polymorphism of the alpha satellite DNA sequences of chromosomes 13 and 21 as revealed by pulse field gel electrophoresis.
    Marçais B; Bellis M; Gérard A; Pagès M; Boublik Y; Roizès G
    Hum Genet; 1991 Jan; 86(3):311-6. PubMed ID: 1997388
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isolation and characterization of DNA probes from the short arm of the human X chromosome that detect restriction fragment length polymorphisms.
    Starr T; Wood S
    Genome; 1987 Feb; 29(1):201-5. PubMed ID: 2884168
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genomic organization, sequence and polymorphism of the human chromosome 4-specific alpha-satellite DNA.
    Mashkova TD; Akopian TA; Romanova LY; Mitkevich SP; Yurov YB; Kisselev LL; Alexandrov IA
    Gene; 1994 Mar; 140(2):211-7. PubMed ID: 7908273
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Altered activity of restriction endonuclease Mn1-I cleavage of mouse satellite DNA.
    Vissel B; Choo KH
    Nucleic Acids Res; 1988 May; 16(10):4731. PubMed ID: 2837743
    [No Abstract]   [Full Text] [Related]  

  • 48. TaqI digestion reveals fractions of satellite DNAs on human chromosomes.
    Tagarro I; González-Aguilera JJ; Fernández-Peralta AM
    Genome; 1991 Apr; 34(2):251-4. PubMed ID: 2055450
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On the mode of evolution of alpha satellite DNA in human populations.
    Marçais B; Charlieu JP; Allain B; Brun E; Bellis M; Roizès G
    J Mol Evol; 1991 Jul; 33(1):42-8. PubMed ID: 1909375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evolution of beta satellite DNA sequences: evidence for duplication-mediated repeat amplification and spreading.
    Cardone MF; Ballarati L; Ventura M; Rocchi M; Marozzi A; Ginelli E; Meneveri R
    Mol Biol Evol; 2004 Sep; 21(9):1792-9. PubMed ID: 15201396
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability.
    Wevrick R; Willard HF
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9394-8. PubMed ID: 2594775
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detection of two TaqI polymorphisms in the VTR region of the human HRAS1 oncogene.
    Pierotti MA; Radice P; Biunno I; Borrello MG; Cattadori MR; Della Porta G
    Cytogenet Cell Genet; 1986; 43(3-4):174-80. PubMed ID: 2879707
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The specific organisation of satellite DNA sequences on the X-chromosome of Mus musculus: partial independence of chromosome evolution.
    Brown SD; Dover GA
    Nucleic Acids Res; 1980 Feb; 8(4):781-92. PubMed ID: 6253924
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14 and 21: implications for recombination between nonhomologues and Robertsonian translocations.
    Choo KH; Vissel B; Brown R; Filby RG; Earle E
    Nucleic Acids Res; 1988 Feb; 16(4):1273-84. PubMed ID: 2831495
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation of polymorphic DNA fragments from human chromosome 4.
    Gilliam TC; Healey ST; MacDonald ME; Stewart GD; Wasmuth JJ; Tanzi RE; Roy JC; Gusella JF
    Nucleic Acids Res; 1987 Feb; 15(4):1445-58. PubMed ID: 2881276
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection of novel centromeric polymorphisms associated with alpha satellite DNA from human chromosome 11.
    Waye JS; Greig GM; Willard HF
    Hum Genet; 1987 Oct; 77(2):151-6. PubMed ID: 2888719
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A highly polymorphic minisatellite (pMS627) on chromosome 14 (D14S44).
    Crosier M; Armour JA; Jeffreys AJ
    Nucleic Acids Res; 1991 Oct; 19(19):5446. PubMed ID: 1923836
    [No Abstract]   [Full Text] [Related]  

  • 58. Nucleotide sequence definition of a major human repeated DNA, the Hind III 1.9 kb family.
    Manuelidis L
    Nucleic Acids Res; 1982 May; 10(10):3211-9. PubMed ID: 6285292
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct visualization of the genomic distribution and organization of two cervid centromeric satellite DNA families.
    Li YC; Lee C; Hseu TH; Li SY; Lin CC
    Cytogenet Cell Genet; 2000; 89(3-4):192-8. PubMed ID: 10965121
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of a human 'midisatellite' sequence.
    Nakamura Y; Julier C; Wolff R; Holm T; O'Connell P; Leppert M; White R
    Nucleic Acids Res; 1987 Mar; 15(6):2537-47. PubMed ID: 3031603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.