BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28412365)

  • 1. Vaccinia-related kinase 3 (VRK3) sets the circadian period and amplitude by affecting the subcellular localization of clock proteins in mammalian cells.
    Park N; Song J; Jeong S; Thi Tran T; Ko HW; Kim EY
    Biochem Biophys Res Commun; 2017 May; 487(2):320-326. PubMed ID: 28412365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleocytoplasmic shuttling of clock proteins.
    Tamanini F; Yagita K; Okamura H; van der Horst GT
    Methods Enzymol; 2005; 393():418-35. PubMed ID: 15817303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleocytoplasmic shuttling and phosphorylation of BMAL1 are regulated by circadian clock in cultured fibroblasts.
    Tamaru T; Isojima Y; van der Horst GT; Takei K; Nagai K; Takamatsu K
    Genes Cells; 2003 Dec; 8(12):973-83. PubMed ID: 14750952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CLOCK-binding small molecule disrupts the interaction between CLOCK and BMAL1 and enhances circadian rhythm amplitude.
    Doruk YU; Yarparvar D; Akyel YK; Gul S; Taskin AC; Yilmaz F; Baris I; Ozturk N; Türkay M; Ozturk N; Okyar A; Kavakli IH
    J Biol Chem; 2020 Mar; 295(11):3518-3531. PubMed ID: 32019867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importin alpha/beta mediates nuclear transport of a mammalian circadian clock component, mCRY2, together with mPER2, through a bipartite nuclear localization signal.
    Sakakida Y; Miyamoto Y; Nagoshi E; Akashi M; Nakamura TJ; Mamine T; Kasahara M; Minami Y; Yoneda Y; Takumi T
    J Biol Chem; 2005 Apr; 280(14):13272-8. PubMed ID: 15689618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance.
    Chaves I; Yagita K; Barnhoorn S; Okamura H; van der Horst GT; Tamanini F
    Mol Cell Biol; 2006 Mar; 26(5):1743-53. PubMed ID: 16478995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term constant light induces constitutive elevated expression of mPER2 protein in the murine SCN: a molecular basis for Aschoff's rule?
    Muñoz M; Peirson SN; Hankins MW; Foster RG
    J Biol Rhythms; 2005 Feb; 20(1):3-14. PubMed ID: 15654066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system.
    Kondratov RV; Chernov MV; Kondratova AA; Gorbacheva VY; Gudkov AV; Antoch MP
    Genes Dev; 2003 Aug; 17(15):1921-32. PubMed ID: 12897057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhythms in clock proteins in the mouse pars tuberalis depend on MT1 melatonin receptor signalling.
    Jilg A; Moek J; Weaver DR; Korf HW; Stehle JH; von Gall C
    Eur J Neurosci; 2005 Dec; 22(11):2845-54. PubMed ID: 16324119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melatonin feedback on clock genes: a theory involving the proteasome.
    Vriend J; Reiter RJ
    J Pineal Res; 2015 Jan; 58(1):1-11. PubMed ID: 25369242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of N-terminal regions of REV-ERBs regulates their intracellular localization.
    Ohba Y; Tei H
    Genes Cells; 2018 Apr; 23(4):285-293. PubMed ID: 29508494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mPER1-mediated nuclear export of mCRY1/2 is an important element in establishing circadian rhythm.
    Loop S; Katzer M; Pieler T
    EMBO Rep; 2005 Apr; 6(4):341-7. PubMed ID: 15791269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ratio of intracellular CRY proteins determines the clock period length.
    Li Y; Xiong W; Zhang EE
    Biochem Biophys Res Commun; 2016 Apr; 472(3):531-8. PubMed ID: 26966073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian organization of the mammalian retina.
    Ruan GX; Zhang DQ; Zhou T; Yamazaki S; McMahon DG
    Proc Natl Acad Sci U S A; 2006 Jun; 103(25):9703-8. PubMed ID: 16766660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posttranslational mechanisms regulate the mammalian circadian clock.
    Lee C; Etchegaray JP; Cagampang FR; Loudon AS; Reppert SM
    Cell; 2001 Dec; 107(7):855-67. PubMed ID: 11779462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts.
    Fan Y; Hida A; Anderson DA; Izumo M; Johnson CH
    Curr Biol; 2007 Jul; 17(13):1091-100. PubMed ID: 17583506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedback repression is required for mammalian circadian clock function.
    Sato TK; Yamada RG; Ukai H; Baggs JE; Miraglia LJ; Kobayashi TJ; Welsh DK; Kay SA; Ueda HR; Hogenesch JB
    Nat Genet; 2006 Mar; 38(3):312-9. PubMed ID: 16474406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis.
    von Gall C; Weaver DR; Moek J; Jilg A; Stehle JH; Korf HW
    Ann N Y Acad Sci; 2005 Apr; 1040():508-11. PubMed ID: 15891103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms.
    Park N; Kim HD; Cheon S; Row H; Lee J; Han DH; Cho S; Kim K
    PLoS One; 2015; 10(9):e0138661. PubMed ID: 26394143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NRON complex controls circadian clock function through regulated PER and CRY nuclear translocation.
    Lee Y; Shen Y; Francey LJ; Ramanathan C; Sehgal A; Liu AC; Hogenesch JB
    Sci Rep; 2019 Aug; 9(1):11883. PubMed ID: 31417156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.