BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 28412403)

  • 1. A further development of the QNAR model to predict the cellular uptake of nanoparticles by pancreatic cancer cells.
    Luan F; Tang L; Zhang L; Zhang S; Monteagudo MC; Cordeiro MNDS
    Food Chem Toxicol; 2018 Feb; 112():571-580. PubMed ID: 28412403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity.
    Sayes C; Ivanov I
    Risk Anal; 2010 Nov; 30(11):1723-34. PubMed ID: 20561263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles.
    Fourches D; Pu D; Tropsha A
    Comb Chem High Throughput Screen; 2011 Mar; 14(3):217-25. PubMed ID: 21275889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative nanostructure-activity relationship modeling.
    Fourches D; Pu D; Tassa C; Weissleder R; Shaw SY; Mumper RJ; Tropsha A
    ACS Nano; 2010 Oct; 4(10):5703-12. PubMed ID: 20857979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSPR modeling of soil sorption coefficients (K(OC)) of pesticides using SPA-ANN and SPA-MLR.
    Goudarzi N; Goodarzi M; Araujo MC; Galvão RK
    J Agric Food Chem; 2009 Aug; 57(15):7153-8. PubMed ID: 19722589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology.
    Puzyn T; Jeliazkova N; Sarimveis H; Marchese Robinson RL; Lobaskin V; Rallo R; Richarz AN; Gajewicz A; Papadopulos MG; Hastings J; Cronin MTD; Benfenati E; Fernández A
    Food Chem Toxicol; 2018 Feb; 112():478-494. PubMed ID: 28943385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores.
    Tetko IV; Solov'ev VP; Antonov AV; Yao X; Doucet JP; Fan B; Hoonakker F; Fourches D; Jost P; Lachiche N; Varnek A
    J Chem Inf Model; 2006; 46(2):808-19. PubMed ID: 16563012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells.
    Kar S; Gajewicz A; Puzyn T; Roy K
    Toxicol In Vitro; 2014 Jun; 28(4):600-6. PubMed ID: 24412539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico prediction of dermal penetration rate of chemicals from their molecular structural descriptors.
    Fatemi MH; Malekzadeh H
    Environ Toxicol Pharmacol; 2012 Sep; 34(2):297-306. PubMed ID: 22659232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSPR studies of impact sensitivity of nitro energetic compounds using three-dimensional descriptors.
    Xu J; Zhu L; Fang D; Wang L; Xiao S; Liu L; Xu W
    J Mol Graph Model; 2012 Jun; 36():10-9. PubMed ID: 22503858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cytotoxicity of nanomaterials: Modeling multiple human cells uptake of functionalized magneto-fluorescent nanoparticles via nano-QSAR.
    Qi R; Pan Y; Cao J; Jia Z; Jiang J
    Chemosphere; 2020 Jun; 249():126175. PubMed ID: 32078856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSAR models for predicting the toxicity of piperidine derivatives against Aedes aegypti.
    Doucet JP; Papa E; Doucet-Panaye A; Devillers J
    SAR QSAR Environ Res; 2017 Jun; 28(6):451-470. PubMed ID: 28604113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the Physicochemical Properties and Biological Activities of Monolayer-Protected Gold Nanoparticles Using Simulation-Derived Descriptors.
    Chew AK; Pedersen JA; Van Lehn RC
    ACS Nano; 2022 Apr; 16(4):6282-6292. PubMed ID: 35289596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling and predicting the biological effects of nanomaterials.
    Winkler DA; Burden FR; Yan B; Weissleder R; Tassa C; Shaw S; Epa VC
    SAR QSAR Environ Res; 2014; 25(2):161-72. PubMed ID: 24625316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression.
    Yao XJ; Panaye A; Doucet JP; Zhang RS; Chen HF; Liu MC; Hu ZD; Fan BT
    J Chem Inf Comput Sci; 2004; 44(4):1257-66. PubMed ID: 15272833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative predictions of gas chromatography retention indexes with support vector machines, radial basis neural networks and multiple linear regression.
    Chen HF
    Anal Chim Acta; 2008 Feb; 609(1):24-36. PubMed ID: 18243870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QNAR modeling of cytotoxicity of mixing nano-TiO
    Yuan B; Wang P; Sang L; Gong J; Pan Y; Hu Y
    Ecotoxicol Environ Saf; 2021 Jan; 208():111634. PubMed ID: 33396154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study.
    Wu J; Mei J; Wen S; Liao S; Chen J; Shen Y
    J Comput Chem; 2010 Jul; 31(10):1956-68. PubMed ID: 20512843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.