BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 28412544)

  • 1. Phosphorylation of WHIRLY1 by CIPK14 Shifts Its Localization and Dual Functions in Arabidopsis.
    Ren Y; Li Y; Jiang Y; Wu B; Miao Y
    Mol Plant; 2017 May; 10(5):749-763. PubMed ID: 28412544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Proteomic Analysis of Coregulation of CIPK14 and WHIRLY1/3 Mediated Pale Yellowing of Leaves in
    Guan Z; Wang W; Yu X; Lin W; Miao Y
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30065159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H
    Lin W; Huang D; Shi X; Deng B; Ren Y; Lin W; Miao Y
    Cells; 2019 Dec; 8(12):. PubMed ID: 31817716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The single-stranded DNA-binding protein WHIRLY1 represses WRKY53 expression and delays leaf senescence in a developmental stage-dependent manner in Arabidopsis.
    Miao Y; Jiang J; Ren Y; Zhao Z
    Plant Physiol; 2013 Oct; 163(2):746-56. PubMed ID: 23922267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Localized WHIRLY1 Affects Salicylic Acid Biosynthesis via Coordination of ISOCHORISMATE SYNTHASE1, PHENYLALANINE AMMONIA LYASE1, and
    Lin W; Zhang H; Huang D; Schenke D; Cai D; Wu B; Miao Y
    Plant Physiol; 2020 Dec; 184(4):1884-1899. PubMed ID: 32900979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter.
    Miao Y; Laun TM; Smykowski A; Zentgraf U
    Plant Mol Biol; 2007 Sep; 65(1-2):63-76. PubMed ID: 17587183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis.
    Miao Y; Laun T; Zimmermann P; Zentgraf U
    Plant Mol Biol; 2004 Aug; 55(6):853-67. PubMed ID: 15604721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling.
    Kakizaki T; Matsumura H; Nakayama K; Che FS; Terauchi R; Inaba T
    Plant Physiol; 2009 Nov; 151(3):1339-53. PubMed ID: 19726569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis WRKY45 Interacts with the DELLA Protein RGL1 to Positively Regulate Age-Triggered Leaf Senescence.
    Chen L; Xiang S; Chen Y; Li D; Yu D
    Mol Plant; 2017 Sep; 10(9):1174-1189. PubMed ID: 28735023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Located WHIRLY1 Interacting with LHCA1 Alters Photochemical Activities of Photosystem I and Is Involved in Light Adaptation in Arabidopsis.
    Huang D; Lin W; Deng B; Ren Y; Miao Y
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29112140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear targeted AtS40 modulates senescence associated gene expression in Arabidopsis thaliana during natural development and in darkness.
    Fischer-Kilbienski I; Miao Y; Roitsch T; Zschiesche W; Humbeck K; Krupinska K
    Plant Mol Biol; 2010 Jul; 73(4-5):379-90. PubMed ID: 20238146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinase CIPK14 functions as a negative regulator of plant immune responses to Pseudomonas syringae in Arabidopsis.
    Ma Y; Chen Q; He J; Cao J; Liu Z; Wang J; Yang Y
    Plant Sci; 2021 Nov; 312():111017. PubMed ID: 34620426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plastid Located WHIRLY1 Enhances the Responsiveness of Arabidopsis Seedlings Toward Abscisic Acid.
    Isemer R; Krause K; Grabe N; Kitahata N; Asami T; Krupinska K
    Front Plant Sci; 2012; 3():283. PubMed ID: 23269926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant Whirly1 translocates from transplastomic chloroplasts to the nucleus.
    Isemer R; Mulisch M; Schäfer A; Kirchner S; Koop HU; Krupinska K
    FEBS Lett; 2012 Jan; 586(1):85-8. PubMed ID: 22154598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WHIRLY1 recruits the histone deacetylase HDA15 repressing leaf senescence and flowering in Arabidopsis.
    Huang D; Lan W; Ma W; Huang R; Lin W; Li M; Chen CY; Wu K; Miao Y
    J Integr Plant Biol; 2022 Jul; 64(7):1411-1429. PubMed ID: 35510566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional relationship between mTERF4 and GUN1 in retrograde signaling.
    Sun X; Xu D; Liu Z; Kleine T; Leister D
    J Exp Bot; 2016 Jun; 67(13):3909-24. PubMed ID: 26685190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-regulation of nuclear genes encoding plastid ribosomal proteins by light and plastid signals during seedling development in tobacco and Arabidopsis.
    Maclean D; Jerome CA; Brown AP; Gray JC
    Plant Mol Biol; 2008 Mar; 66(5):475-90. PubMed ID: 18193395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastid genome instability leads to reactive oxygen species production and plastid-to-nucleus retrograde signaling in Arabidopsis.
    Lepage É; Zampini É; Brisson N
    Plant Physiol; 2013 Oct; 163(2):867-81. PubMed ID: 23969600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The plastidic DEAD-box RNA helicase 22, HS3, is essential for plastid functions both in seed development and in seedling growth.
    Kanai M; Hayashi M; Kondo M; Nishimura M
    Plant Cell Physiol; 2013 Sep; 54(9):1431-40. PubMed ID: 23803517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis CIPK14 positively regulates glucose response.
    Yan J; Niu F; Liu WZ; Zhang H; Wang B; Lan W; Che Y; Yang B; Luan S; Jiang YQ
    Biochem Biophys Res Commun; 2014 Aug; 450(4):1679-83. PubMed ID: 25058458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.