These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28412569)

  • 1. A comparison of the abilities of the USLE-M, RUSLE2 and WEPP to model event erosion from bare fallow areas.
    Kinnell PIA
    Sci Total Environ; 2017 Oct; 596-597():32-42. PubMed ID: 28412569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado.
    Anache JAA; Flanagan DC; Srivastava A; Wendland EC
    Sci Total Environ; 2018 May; 622-623():140-151. PubMed ID: 29212051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots.
    Marques MJ; Bienes R; Jiménez L; Pérez-Rodríguez R
    Sci Total Environ; 2007 May; 378(1-2):161-5. PubMed ID: 17306858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical models based on the universal soil loss equation fail to predict sediment discharges from Chesapeake Bay catchments.
    Boomer KB; Weller DE; Jordan TE
    J Environ Qual; 2008; 37(1):79-89. PubMed ID: 18178880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the WEPP model performance for predicting daily runoff in three terrestrial ecosystems in western Syria.
    Mohammed S; Hussien M; Alsafadi K; Mokhtar A; Rianna G; Kbibo I; Barkat M; Talukdar S; Szabó S; Harsanyi E
    Heliyon; 2021 Apr; 7(4):e06764. PubMed ID: 33997373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performances of the WEPP and WaNuLCAS models on soil erosion simulation in a tropical hillslope, Thailand.
    Onsamrarn W; Chittamart N; Tawornpruek S
    PLoS One; 2020; 15(11):e0241689. PubMed ID: 33147263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WEPP and ANN models for simulating soil loss and runoff in a semi-arid Mediterranean region.
    Albaradeyia I; Hani A; Shahrour I
    Environ Monit Assess; 2011 Sep; 180(1-4):537-56. PubMed ID: 21170584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the rusle and disturbed wepp erosion models for predicting soil loss in the first year after wildfire in NW Spain.
    Fernández C; Vega JA
    Environ Res; 2018 Aug; 165():279-285. PubMed ID: 29734029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving and calibrating channel erosion simulation in the Water Erosion Prediction Project (WEPP) model.
    Guo T; Srivastava A; Flanagan DC
    J Environ Manage; 2021 Aug; 291():112616. PubMed ID: 33964624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency analysis of storm-scale soil erosion and characterization of extreme erosive events by linking the DWEPP model and a stochastic rainfall generator.
    Shmilovitz Y; Marra F; Wei H; Argaman E; Nearing M; Goodrich D; Assouline S; Morin E
    Sci Total Environ; 2021 Sep; 787():147609. PubMed ID: 34000549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil erosion in diverse agroecological regions of India: a comprehensive review of USLE-based modelling.
    Makhdumi W; Shwetha HR; Dwarakish GS
    Environ Monit Assess; 2023 Aug; 195(9):1112. PubMed ID: 37648877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adapting the WEPP Hillslope Model and the TLS Technology to Predict Unpaved Road Soil Erosion.
    Wang Y; He W; Zhang T; Zhang Y; Cao L
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35954569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The WEPP Model Application in a Small Watershed in the Loess Plateau.
    Han F; Ren L; Zhang X; Li Z
    PLoS One; 2016; 11(3):e0148445. PubMed ID: 26963704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of USLE/GIS methodology for predicting soil loss in a semiarid agricultural watershed.
    Erdogan EH; Erpul G; Bayramin I
    Environ Monit Assess; 2007 Aug; 131(1-3):153-61. PubMed ID: 17171276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Erosion Characteristics in Purple and Yellow Soils Using Simulated Rainfall Experiments.
    Luo B; Han Z; Yang J; Wang Q
    Int J Environ Res Public Health; 2021 Dec; 19(1):. PubMed ID: 35010617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of terracing techniques for controlling soil erosion by water in Rwanda.
    Rutebuka J; Munyeshuli Uwimanzi A; Nkundwakazi O; Mbarushimana Kagabo D; Mbonigaba JJM; Vermeir P; Verdoodt A
    J Environ Manage; 2021 Jan; 277():111369. PubMed ID: 32980637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical determination of rainfall-runoff erosivity indices for single storms in the Chinese Loess Plateau.
    Zheng M; Chen X
    PLoS One; 2015; 10(3):e0117989. PubMed ID: 25781173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validating and improving interrill erosion equations.
    Zhang FB; Wang ZL; Yang MY
    PLoS One; 2014; 9(2):e88275. PubMed ID: 24516624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling phosphorus transport in an agricultural watershed using the WEPP model.
    Perez-Bidegain M; Helmers MJ; Cruse R
    J Environ Qual; 2010; 39(6):2121-9. PubMed ID: 21284310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of rows arrangement, soil management, and rainfall characteristics on water and soil losses in Italian sloping vineyards.
    Bagagiolo G; Biddoccu M; Rabino D; Cavallo E
    Environ Res; 2018 Oct; 166():690-704. PubMed ID: 30075848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.